Authors

Tingbo Hou

Type

Text

Type

Dissertation

Advisor

Qin, Hong | Mitchell, Joseph S. B. | Gu, Xianfeng Wang, Rui

Date

2012-05-01

Keywords

Computer science

Department

Department of Computer Science

Language

en_US

Source

This work is sponsored by the Stony Brook University Graduate School in compliance with the requirements for completion of degree.

Identifier

http://hdl.handle.net/11401/71547

Publisher

The Graduate School, Stony Brook University: Stony Brook, NY.

Format

application/pdf

Abstract

With the rapidly development of 3D data acquisition, a massive collection of dynamic shapes emerge and become ubiquitous in various real-world applications. It results in the urgent need of techniques for dynamic shape analysis and processing. Accordingly, a large body of literature has been dedicated to this study, in which heat diffusion and related tools are frequently used. This dissertation concentrates on kernels and algorithms derived from the diffusion theory, with the purpose of developing new techniques for dynamic shape analysis. Bivariate kernels represent point-to-point relations on manifolds. We introduce three kernels: geodesic Gaussian, admissible diffusion wavelet, and Mexican hat wavelet. The geodesic Gaussian is a Gaussian with geodesic metric, which is isometric invariant. It is a good approximation to the heat kernel at small scales. For large scales, we propose an efficient computing by a pyramid structure and the semi-group property. The admissible diffusion wavelet comes from diffusion wavelets. It is constructed in a bottom-up fashion by a diffusion operator and its dyadic powers. It can extract details of a function at different scales. The Mexican hat wavelet is defined as the negative first derivative of the heat kernel with respect to time. It is a solution to the heat equation with the Laplace-Beltrami operator as initial condition. We explore applications of these kernels in dynamic shape analysis, including feature detection, multiscale approximation, shape representation, geometry processing, etc. Functions generated by multiple kernels further enrich the kernel family. We present heat kernel coordinates, together with a complete solution for dense registration of partial nonrigid shapes. The coordinates consist of heat kernels from a set of features, and their magnitudes serve as priorities in registration. Based on diffusion wavelets, we propose the probability-density-function distance. It measures probability distributions rather than single points, which makes it resilient to small perturbations. For applications, we apply it to local coordinates and volumetric image registration. Together with some collaborators, we extend our work to anisotropic kernels and more algorithms, which demonstrate the wide application scope of the diffusion theory. At the end, we conclude this dissertation, by comparing the proposed kernel functions, discussing some remaining challenges, and envisioning broader applications. | 196 pages

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.