Authors

XIAOHUA HOU

Type

Text

Type

Thesis

Advisor

Gu, Xianfeng | Qin, Hong | Mueller, Klaus.

Date

2012-12-01

Keywords

Computer science

Department

Department of Computer Science

Language

en_US

Source

This work is sponsored by the Stony Brook University Graduate School in compliance with the requirements for completion of degree.

Identifier

http://hdl.handle.net/11401/71527

Publisher

The Graduate School, Stony Brook University: Stony Brook, NY.

Format

application/pdf

Abstract

This thesis presents a new paradigm for non-rigid 3D shape retrieval, which is also called Bag of Feature Graphs (BoFG). The main idea is to connect only the features on the shape to construct the graphs so that the number of points involved in the computation is greatly reduced. Given a vocabulary of geometric words, the BoFG approach generates a graph that preserves the spatial information among features for each word. The spatial information is weighted by its similarities to each word so that points unlike the word category are eliminated. And the graphs are captured by the affinity matrices of Weighted Heat Kernels (WHK) whose eigenvalues form a shape descriptor. Also, the BoFG approach can supports partial 3D shape retrieval by coupling with graph matching techniques and comparing only sub graphs that represent common parts of the shape. Finally, experiments are conducted and show that the proposed BoFG method is faster to compute and the retrieval performance is also competitive compared with other state-of-the-art methods. | 68 pages

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.