Type

Text

Type

Dissertation

Advisor

John J. Chen | John J. Chen. | Nancy R. Mendell | Stephen J. Finch | Barbara Nemesure.

Date

2011-08-01

Keywords

Statistics -- Biostatistics | Centering, linear transformation, Collinearity, Convergence rate, Longitudinal data, Mixed-effects, multilevel, hierarchical models, Random effects

Department

Department of Applied Mathematics and Statistics

Language

en_US

Source

This work is sponsored by the Stony Brook University Graduate School in compliance with the requirements for completion of degree.

Identifier

http://hdl.handle.net/11401/71771

Publisher

The Graduate School, Stony Brook University: Stony Brook, NY.

Format

application/pdf

Abstract

Linear mixed-effects model (LMM) has been widely used in hierarchical and longitudinal data analyses. In practice, the fitting algorithm can fail to converge because of boundary issues of the estimated random-effects covariance matrix, i.e. | being near-singular, non-positive definite, or both. The traditional grand mean centering technique cannot generally improve the numerical stability and may even increase the correlation between random-effects. Also, current available algorithms are not computationally optimal because the condition number of random-effects covariance matrix is unnecessarily increased when the random-effects correlation estimate is not zero. To improve the convergence of data with such boundary issue, we propose an adaptive fitting (AF) algorithm using an optimal linear transformation of the random-effects design matrix. It is a data-driven adaptive procedure, aiming at reducing subsequent random-effects correlation estimates down to zero in the optimal transformed estimation space. Extension of the AF algorithm to multiple random-effects models is also discussed. The AF algorithm can be easily implemented with standard software and be applied to other mixed-effects models. Simulations show that the AF algorithm significantly improves the convergence rate, and reduces the condition number and non-positive definite rate of the estimated random-effects covariance matrix, especially under small sample size, relative large noise, and high correlation settings. We also propose a new two-step modeling strategy for LMM fitting and random-effects selection. This parsimonious LMM with uncorrelated random-effects in the optimal transformed space is favored by the likelihood ratio test and Akaike Information Criterion. Two real life longitudinal data sets are used to illustrate the application of this AF algorithm implemented with software package R (nlme).

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.