Authors

Gina Sorrentino

Type

Text

Type

Dissertation

Advisor

O'Leary, Maureen A, Thomsen, Gerald H

Date

2012-05-01

Keywords

Evolution & development | Bilateria, BMP, Cnidaria, Nematostella vectensis, Smad, TGFb

Department

Department of Anatomical Sciences

Language

en_US

Source

This work is sponsored by the Stony Brook University Graduate School in compliance with the requirements for completion of degree.

Identifier

http://hdl.handle.net/11401/71418

Publisher

The Graduate School, Stony Brook University: Stony Brook, NY.

Format

application/pdf

Abstract

Activity of the TGFΒ pathway is essential to the establishment of body axes and tissue differentiation in bilaterians. Orthologs for core pathway members have been found in all metazoans. Uncertain homology of the body axes and tissues patterned by this pathway raises questions about the activities of these molecules across the metazoan tree. We focus on the principal canonical transduction proteins (R-Smads) of the TGFΒ pathway, which instruct both axial patterning and tissue differentiation in the developing embryo. We compare the activity of R-Smads from a cnidarian (Nematostella vectensis), an arthropod (Drosophila melanogaster), and a vertebrate (Xenopus laevis) in Xenopus embryonic assays. NvSmad1/5 ventralized Xenopus embryos when expressed in dorsal blastomeres, similar to the effects of XSmad1. However, NvSmad1/5 was less potent than XSmad1 in its ability to activate downstream target genes in Xenopus animal cap assays. NvSmad2/3 strongly induced general mesendoderm markers, but weakly induced genes involved in specifying the Spemann organizer. Furthermore, NvSmad2/3 was unable to induce a secondary axis in Xenopus embryos, whereas the orthologs from Xenopus (XSmad2 and XSmad2) and Drosophila (dSmad2) were capable of doing so. Replacement of the NvSmad2/3 MH2 domain with the Xenopus counterpart led to a slight increase in inductive capability, but it could not generate a secondary body axis. We conclude that the activities of Smad1/5 orthologs have been largely conserved across Metazoa, but the activity of Smad2/3 orthologs has undergone more evolutionary divergence. Given the high level of sequence identity among R-Smad orthologs, we compared the protein sequences of Smad2/3 orthologs from 30 different metazoan taxa to locate regions of variation among taxa. Functional regions showed striking conservation, with most of the amino acid variation located in regions that are not well-described in the literature at present. We recommend further chimeric and mutagenic experimentation with Smad2/3 and present candidate sites. Our data demonstrate that large-scale morphological variation can be caused by fine-scale molecular divergence. | 130 pages

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.