Authors

Benjamin Balsam

Type

Text

Type

Dissertation

Advisor

Viro, Oleg | Kirillov Jr., Alexander

Date

2012-08-01

Keywords

Quantum Algebra, Quantum Computing, Topological Quantum Field Theory | Mathematics--Physics

Department

Department of Mathematics

Language

en_US

Source

This work is sponsored by the Stony Brook University Graduate School in compliance with the requirements for completion of degree.

Identifier

http://hdl.handle.net/11401/71151

Publisher

The Graduate School, Stony Brook University: Stony Brook, NY.

Format

application/pdf

Abstract

In recent years, the application of quantum groups to the study of low-dimensional topology has become an active topic of research. In three-dimensions, these yield the well-known Reshetihkin-Turaev (RT) invariants, which are a mathematical formulation of Chern- Simons theory and Turaev-Viro (TV) theory, which is a convergent form of the Ponzano-Regge state sum formula from Quantum Gravity. Both RT and TV are more than invariants;they have a far richer structure known as a Topological Quantum Field Theory (TQFT). We describe Turaev-Viro theory as an extended (3-2-1)-TQFT and use this description to prove a theorem relating it to RT theory. Turaev-Viro theory has several equivalent descriptions. We examine Kitaev's toric code from quantum computation and the Levin- Wen model from condensed matter physics and show that these theories are extended TQFTs coinciding with TV theory. | 192 pages

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.