Authors

Shuying Sun

Type

Text

Type

Dissertation

Advisor

Senthil Muthuswamy | Tan, Wei | David L. Spector | Linda Van Aelst | Rui-Ming Xu.

Date

2010-05-01

Keywords

Fox-1/2, SF2/ASF, Splicing | Biology, Molecular

Department

Department of Molecular and Cellular Biology

Language

en_US

Source

This work is sponsored by the Stony Brook University Graduate School in compliance with the requirements for completion of degree.

Identifier

http://hdl.handle.net/11401/71132

Publisher

The Graduate School, Stony Brook University: Stony Brook, NY.

Format

application/pdf

Abstract

Alternative splicing is a highly regulated process in eukaryotes. It greatly increases the diversity of proteins encoded by the genome, and its disruption can cause a number of genetic diseases. SF2/ASF is a prototypical serine/arginine-rich (SR) protein, with important roles in constitutive and alternative splicing and other aspects of mRNA metabolism. SFRS1 (SF2/ASF) is a potent proto-oncogene with abnormal expression in many tumors. I found that SF2/ASF negatively autoregulates its expression to maintain homeostatic levels of the protein. I characterized six SF2/ASF alternatively spliced mRNA isoforms: the major isoform encodes full-length protein, whereas the others are either retained in the nucleus or degraded by NMD. Unproductive splicing accounts for only part of the autoregulation, which occurs primarily at the translational level. The effect is specific to SF2/ASF and requires RRM2, the second of two RNA-recognition motifs. The ultraconserved 3'UTR (untranslated region) is necessary and sufficient for downregulation. SF2/ASF overexpression shifts the distribution of target mRNA towards mono-ribosomes, and translational repression is partly independent of Dicer and a 5' cap. Thus, multiple post-transcriptional and translational mechanisms are involved in fine-tuning the expression of SF2/ASF. Fox-1 and Fox-2 are brain- and muscle-specific alternative splicing factors. Their single RRM is conserved from worm to human, and specifically binds the RNA element UGCAUG. Fox-1/2 regulate alternative splicing positively or negatively in a position-dependent manner: they activate exon inclusion when binding to the downstream intron, and promote exon skipping when binding to the upstream intron. I explored the mechanisms of splicing activation and repression by Fox-1. I found that Fox-1 can enhance exon inclusion of a heterologous gene when tethered to the downstream intron by a phage MS2 hairpin/coat-protein interaction, and its C-terminal domain is sufficient for this activity. However, both the RRM and the C-terminal domain are required for exon repression when tethered to the upstream intron. I used immunoprecipitation and mass spectrometry to identify proteins that interact with the C-terminal domain of Fox-1. Characterization of several interacting candidates to elucidate their potential roles in alternative splicing regulation by Fox-1 is in progress.We also applied Solexa high-throughput mRNA sequencing to assess global changes of alternative splicing controlled by Fox-2. We generated ~110 million paired-end reads to compare target-isoform expression levels in cells expressing Fox-2 versus cells treated by RNAi to reduce Fox-2 expression. We identified about 150 high-confidence alternative exons with Fox-dependent splicing, of which 95% could be experimentally validated. Taken together, my studies provide insights about the regulatory mechanisms involving two kinds of human splicing factors, and have broad implications for post-transcriptional control of gene expression and its misregulation in disease.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.