Authors

Tasnuva Noor

Type

Text

Type

Thesis

Advisor

Hong, Sangjin. | Salman, Emre

Date

2016-12-01

Keywords

Electrical engineering | Clock Gating, Dual Edge Triggered Flip-flop, Integrated Circuit Design, Integrated Clock Gating Cell, Low Power Design, VLSI

Department

Department of Electrical Engineering.

Language

en_US

Source

This work is sponsored by the Stony Brook University Graduate School in compliance with the requirements for completion of degree.

Identifier

http://hdl.handle.net/11401/77481

Publisher

The Graduate School, Stony Brook University: Stony Brook, NY.

Format

application/pdf

Abstract

A novel glitch-free integrated clock gating (ICG) cell is developed and demonstrated in 45 nm CMOS technology. The proposed cell is more reliable as it produces an uninterrupted gated clock signal in cases where glitches occur in the enable signal during clock transitions. A detailed comparison of the proposed cell with the existing integrated clock gating cells is also presented. Glitch-free operation (and therefore high reliability) is achieved at the expense of larger power and delay, as quantified for 45 nm CMOS technology. Several design issues and different glitch characteristics are also discussed. The proposed ICG cell is shown to be highly applicable to dual edge triggered flip- flops where existing ICGs fail if there are glitches in the enable during clock transitions. | 44 pages

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.