Type

Text

Type

Thesis

Advisor

Stephan B. Munch | Conover, David O. | Michael G. Frisk.

Date

2010-12-01

Keywords

species adaptation

Department

Department of Marine and Atmospheric Science

Language

en_US

Source

This work is sponsored by the Stony Brook University Graduate School in compliance with the requirements for completion of degree.

Identifier

http://hdl.handle.net/11401/71082

Publisher

The Graduate School, Stony Brook University: Stony Brook, NY.

Format

application/pdf

Abstract

Understanding how species adapt to spatial climate gradients can provide clues to potential evolutionary responses to climate change. Species distributed across broad environmental gradients, such as those that occur along latitudes or altitudes, often exhibit adaptive genetic variation. However, little attention has been given to how the type of environmental gradient shapes adaptive responses. To provide insight into this, local adaptation is compared in related fish species across two very different environmental gradients: the Atlantic and Pacific coasts of North America. Local adaptation is first examined in the California grunion (Leuresthes tenuis) and then results are compared to previous work on the Atlantic silverside. Common garden experiments and wild fish studies were used to test for local adaptation among several traits (growth capacity, sex determination, and vertebral number) of the California grunion across three latitudinal populations: Monterey, CA (36.6_N), Malibu, CA (34.0_N), and Ensenada, MX (31.9_N). Consistent genetic differences in growth capacity between latitudinal populations were not observed. Wild southern grunion were slightly larger and grew faster than more northern grunion, likely due to environmental effects. Temperature (p<0.001) and photoperiod (p=0.011) were found to significantly affect sex ratios of laboratory reared fish, indicating that grunion have environmental sex determination (ESD); however the level of ESD did not differ among populations. Mean vertebral numbers in wild grunion were nearly identical for all populations. The lack of latitudinal variation in these traits of the grunion is in direct contrast to the Atlantic silverside, which exhibits a high degree of genetic differentiation in all of the above traits. Results also differ from recent work on the topsmelt, another Pacific coast silverside species. Failure to observe latitudinal variation in the grunion unlike its other taxonomic relatives may be due to its oceanic rather than estuarine habitat, which provides a greater opportunity for broad-scale gene flow and results in a more homogenous environment. Implications for climate change are discussed.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.