Authors

Shawn Xie

Type

Text

Type

Dissertation

Advisor

Sitharaman, Balaji | Button, Terry | Hagness, Susan. | Vaska, Paul

Date

2016-12-01

Keywords

ablation, cancer, carbon nanotubes, hyperthermia, local delivery, microwave | Biomedical engineering

Department

Department of Biomedical Engineering

Language

en_US

Source

This work is sponsored by the Stony Brook University Graduate School in compliance with the requirements for completion of degree.

Identifier

http://hdl.handle.net/11401/76978

Publisher

The Graduate School, Stony Brook University: Stony Brook, NY.

Format

application/pdf

Abstract

Carbon nanotubes (CNTs) in recent years have been cited to provide great potential for biomedical applications such as drug delivery, imaging and hyperthermia. In particular, it has been shown that they are able to interact with a broad array of electromagnetic radiation, including microwaves. The latter is of great interest for cancer imaging and therapy due to its non-ionizing nature and unique balance of spatial resolution and penetration depth, as well as ability to thermally ablate tumor tissue. Combined with microwaves, CNTs can serve as a platform with high selectivity of microwave absorption, enabling selective microwave thermal therapy, and effective means for synergistically enhancing effect of radiotherapy, chemotherapy and immunotherapy in cancer treatment. However, impurities, poor dispersibility and lack of fine-tuning of intrinsic physicochemical properties hinder CNTs’ utility for these applications. We present a CNT formulation useful for such applications by investigating different purification methods and elucidating the impact of physicochemical changes on the microwave dielectric properties of CNT dispersions. Based on these results, we developed a formulation of CNTs with high dispersibility and microwave dielectric and heating properties by fine-tuning an acid purification method. We also performed in vivo acute toxicity and ultrasound and photoacoustic imaging of the CNTs after injecting directly into tumors of mice models to demonstrate safety and validate the ability of the CNTs to be monitored in real-time. This work brings CNTs closer to their potential to serve as microwave hyperthermia agents. | Carbon nanotubes (CNTs) in recent years have been cited to provide great potential for biomedical applications such as drug delivery, imaging and hyperthermia. In particular, it has been shown that they are able to interact with a broad array of electromagnetic radiation, including microwaves. The latter is of great interest for cancer imaging and therapy due to its non-ionizing nature and unique balance of spatial resolution and penetration depth, as well as ability to thermally ablate tumor tissue. Combined with microwaves, CNTs can serve as a platform with high selectivity of microwave absorption, enabling selective microwave thermal therapy, and effective means for synergistically enhancing effect of radiotherapy, chemotherapy and immunotherapy in cancer treatment. However, impurities, poor dispersibility and lack of fine-tuning of intrinsic physicochemical properties hinder CNTs’ utility for these applications. We present a CNT formulation useful for such applications by investigating different purification methods and elucidating the impact of physicochemical changes on the microwave dielectric properties of CNT dispersions. Based on these results, we developed a formulation of CNTs with high dispersibility and microwave dielectric and heating properties by fine-tuning an acid purification method. We also performed in vivo acute toxicity and ultrasound and photoacoustic imaging of the CNTs after injecting directly into tumors of mice models to demonstrate safety and validate the ability of the CNTs to be monitored in real-time. This work brings CNTs closer to their potential to serve as microwave hyperthermia agents. | 99 pages

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.