Type
Text
Type
Dissertation
Advisor
Stephens, Peter | Fernandez Serra, Maria Victoria | Kiryluk, Joanna | Li, Yan.
Date
2014-12-01
Keywords
DFT, hydrogen bond, ice, quantum effects, van der Waals bond, water | Condensed matter physics
Department
Department of Physics.
Language
en_US
Source
This work is sponsored by the Stony Brook University Graduate School in compliance with the requirements for completion of degree.
Identifier
http://hdl.handle.net/11401/76719
Publisher
The Graduate School, Stony Brook University: Stony Brook, NY.
Format
application/pdf
Abstract
Despite the simplicity of the molecule, condensed phases of water show many physical anomalies, some of which are still unexplained to date. This thesis focuses on one striking anomaly that has been largely neglected and never explained. When hydrogen (1H) is replaced by deuterium (2 D), zero point fluctuations of the heavy isotope causes ice to expand, whereas in normal isotope effect, heavy isotope causes volume contraction. Furthermore, in a normal isotope effect, the shift in volume should decrease with increasing temperature, while, in ice, the volume shift increases with increasing temperature and persists up to the melting temperature and also exists in liquid water. In this dissertation, nuclear quantum effects on structural and cohesive properties of different ice polymorphs are investigated. We show that the anomalous isotope effect is well described by first principles density functional theory with van der Waals (vdW-DF) functionals within the quasi-harmonic approximation. Our theoretical modeling explains how the competition between the intra- and inter-molecular bonding of ice leads to an anomalous isotope effect in the volume and bulk modulus of ice. In addition, we predict a normal isotope effect when 16O is replaced by 18O, which is experimentally confirmed. Furthermore, the transition from proton disordered hexagonal phase, ice Ih to proton ordered hexagonal phase, ice XI occurs with a temperature difference between 1H and 2D of 6K, in good agreement with experimental value of 4K. We explain, for first time for that this temperature difference is entirely due to the zero point energy. In the second half of this thesis, we expand our study to the other ice phases: ice Ic, ice IX, ice II, ice VIII, clathrate hydrates, and low and high density amorphous ices. We employ the methodology that we have developed to investigate the isotope effect in structures with different configurations. We show that there is a transition from anomalous isotope effect to normal isotope effect in these structures as the density increases. We analyse the bonding mechanism of these structures and make links to the most important anomalies of liquid water. | 183 pages
Recommended Citation
Pamuk, Betul, "Nuclear Quantum Effects in Ice Phases and Water from First Principles Calculations" (2014). Stony Brook Theses and Dissertations Collection, 2006-2020 (closed to submissions). 2600.
https://commons.library.stonybrook.edu/stony-brook-theses-and-dissertations-collection/2600