Authors

Peter Sandor

Type

Text

Type

Dissertation

Advisor

Weinacht, Thomas C. | Schneble, Dominik A. | Dawber, Matthew | Bergeman, Thomas | Baumert, Thomas.

Date

2016-12-01

Keywords

Physics | femtosecond laser, strong-field ionization, velocity map imaging

Department

Department of Physics

Language

en_US

Source

This work is sponsored by the Stony Brook University Graduate School in compliance with the requirements for completion of degree.

Identifier

http://hdl.handle.net/11401/76659

Publisher

The Graduate School, Stony Brook University: Stony Brook, NY.

Format

application/pdf

Abstract

In this thesis, work is presented on molecular strong-field ionization, during which an electron is removed from polyatomic molecules in the presence of strong laser fields. This is a process which is the basis of a number of experimental techniques to uncover electronic dynamics in atoms and molecules on the femtosecond and attosecond timescale. ’Strong’ refers to an electric field strength which leads to a response from the system which can not be modeled perturbatively. These fields can be easily produced in the focus of femtosecond laser radiation, as is done in this work. With the use of velocity map imaging of the photoelectron in coincidence with the fragment ion, multiple ionization–dissociation pathways can be distinguished. It is shown that as opposed to early attempts to model the process, multiple low-lying states are populated in the ion, and also the signatures of multielectron dynamics are revealed. By changing the laser pulse duration from 30 fs to below 10 fs, control is demonstrated over which quantum states of the ion are populated. It is also shown that for pulses shorter than 10 fs (which is a timescale below the shortest vibrational period in molecules), ionization pathways that involve motion of the nuclei are almost completely shut off. Finally, the origin of electrons with <1 meV kinetic energy is discussed. A two-step model is proposed for creating the electrons: the first step is population transfer to high-lying excited states of the neutral molecule by the laser field; the second step is ionization. Different ionization mechanisms are examined and their viability is checked against available data. | In this thesis, work is presented on molecular strong-field ionization, during which an electron is removed from polyatomic molecules in the presence of strong laser fields. This is a process which is the basis of a number of experimental techniques to uncover electronic dynamics in atoms and molecules on the femtosecond and attosecond timescale. ’Strong’ refers to an electric field strength which leads to a response from the system which can not be modeled perturbatively. These fields can be easily produced in the focus of femtosecond laser radiation, as is done in this work. With the use of velocity map imaging of the photoelectron in coincidence with the fragment ion, multiple ionization–dissociation pathways can be distinguished. It is shown that as opposed to early attempts to model the process, multiple low-lying states are populated in the ion, and also the signatures of multielectron dynamics are revealed. By changing the laser pulse duration from 30 fs to below 10 fs, control is demonstrated over which quantum states of the ion are populated. It is also shown that for pulses shorter than 10 fs (which is a timescale below the shortest vibrational period in molecules), ionization pathways that involve motion of the nuclei are almost completely shut off. Finally, the origin of electrons with <1 meV kinetic energy is discussed. A two-step model is proposed for creating the electrons: the first step is population transfer to high-lying excited states of the neutral molecule by the laser field; the second step is ionization. Different ionization mechanisms are examined and their viability is checked against available data. | 85 pages

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.