Type

Text

Type

Dissertation

Advisor

Zahed, Ismael | Abanov, Alexander G | Du, Xu | Kharzeev, Dmitri E | Tsvelik, Alexei | .

Date

2016-12-01

Keywords

Condensed matter physics -- Theoretical physics | Chiral systems, Hydrodynamics, Kinetic theory, Quantum anomalies

Department

Department of Physics

Language

en_US

Source

This work is sponsored by the Stony Brook University Graduate School in compliance with the requirements for completion of degree.

Identifier

http://hdl.handle.net/11401/76648

Publisher

The Graduate School, Stony Brook University: Stony Brook, NY.

Format

application/pdf

Abstract

The experimental realization of Dirac and Weyl semimetals in 2014 and 2015 respectively has increased the interest in the topic. Similarly to graphene, the discovered materials are characterized by massless quasiparticles. In three dimensions these quasiparticles can be described by the Weyl Hamiltonian which exhibits so-called chiral anomaly at low energies. The chiral anomaly has a transport signature, namely, the enhancement of longitudinal conductivity along the direction of external magnetic field. This effect in new materials is the condensed matter version of the chiral magnetic effect (CME) predicted to happen in heavy ion collisions. Due to its topological nature the chiral anomaly it is believed to be robust with respect to the interaction strength and anomalous contribution to transport is believed to be universal and independent of the interaction. This thesis is devoted to the study of magnetotransport in Dirac and Weyl metals. For that, we use the chiral kinetic theory to describe within the same framework both the negative magnetoresistance caused by chiral magnetic effect and quantum oscillations in the magnetoresistance due to the existence of the Fermi surface. In the second part, we refer to the hydrodynamics with gauge anomaly and study the non-dissipative transport using variational principle as a main tool. In the last part of the Thesis we also apply variational approach to study the Hall viscosity in two-dimensional systems. | 89 pages

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.