Type

Text

Type

Thesis

Advisor

Rafailovich, Miriam | Sokolov, Jonathan | Pinkas-Sarafova, Adriana.

Date

2015-12-01

Keywords

Materials Science | 3D Printing, Additive Manufacturing, Implants, polylactic acid, prosthetics, Sterilization

Department

Department of Materials Science and Engineering.

Language

en_US

Source

This work is sponsored by the Stony Brook University Graduate School in compliance with the requirements for completion of degree.

Identifier

http://hdl.handle.net/11401/76304

Publisher

The Graduate School, Stony Brook University: Stony Brook, NY.

Format

application/pdf

Abstract

Manufacturing industries have evolved tremendously in the past decade with the introduction of Additive Manufacturing (AM), also known as 3D Printing. The medical device industry has been a leader in adapting this new technology into research and development. 3D printing enables medical devices and implants to become more customizable, patient specific, and allows for low production numbers. This study compares the mechanical and thermal properties of traditionally manufactured parts versus parts manufactured through 3D printing before and after sterilization, and the ability of an FDM printer to produce reliable, identical samples. It was found that molded samples and 100% infill high-resolution samples have almost identical changes in properties when exposed to different sterilization methods, and similar cooling rates. The data shown throughout this investigation confirms that manipulation of printing parameters can result in an object with comparable material properties to that created through traditional manufacturing methods. | 41 pages

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.