Authors

Yiwei Gao

Type

Text

Type

Dissertation

Advisor

W. Todd Miller | Nicole, Sampson S. | Michael J. Hayman | Nicolas Nassar | Howard Crawford.

Date

2010-08-01

Keywords

Biology, Molecular

Department

Department of Molecular and Cellular Biology

Language

en_US

Source

This work is sponsored by the Stony Brook University Graduate School in compliance with the requirements for completion of degree.

Identifier

http://hdl.handle.net/11401/70991

Publisher

The Graduate School, Stony Brook University: Stony Brook, NY.

Format

application/pdf

Abstract

The Signal Transducers and Activators of Transcription (STATs) are a family of transcription factors that play important roles in cytokine signaling. Following cytokine stimulation they are tyrosine phosphorylated by receptor-associated Janus kinases (JAKs). Phosphorylation promotes their dimerization and this confers their ability to bind DNA consensus sequences and stimulate gene expression. STAT3 is a member of this family and can be activated by a large number of cytokines, growth factors and hormones. It is also a target of oncogenic tyrosine kinases that commonly link STAT3 closely with cancer. One of these tyrosine kinases is called breast tumor kinase (Brk). Brk is a non-receptor tyrosine kinase that is expressed in more than 60% of breast tumors. We have shown that Brk activates STAT3 and induces transcriptional activation of STAT3. One of the genes induced by tyrosine phosphorylated STAT3 is a negative regulator of cytokine signaling, the suppressor of cytokine signaling 3 (SOCS3). SOCS3 is known to block signaling mediated by cytokine receptors in a classical feedback loop. We have found that SOCS3 is also induced in response to Brk and it is able to inhibit the ability of Brk to phosphorylate STAT3. The molecular mechanism by which SOCS3 suppresses Brk activity has been investigated in this study. SOCS3 has several functional domains, a kinase inhibitory region (KIR), followed by an extended SH2 subdomain (ESS), an SH2 domain, and the conserved C-terminal SOCS box. A link to proteosomal degradation was discovered with the association of the SOCS box to components of the E3 ubiquitin ligase complex. It is demonstrated that the primary inhibitory function of SOCS3 on Brk is mediated by the KIR domain. SOCS3 physically associates with Brk and this association is mainly mediated by SH2 domain in SOCS3 and tyrosine kinase domain in Brk. In addition, SOCS3 promotes Brk degradation and the SOCS box is necessary for this effect. These findings identify Brk as a target of SOCS3, and demonstrate the inhibitory mechanism relies on binding to Brk and effecting both kinase activity and protein degradation.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.