Authors

George Zanazzi

Type

Text

Type

Dissertation

Advisor

Howard Sirotkin | Matthews, Gary G. | Steve Yazulla | Ruth Heidelberger.

Date

2010-12-01

Keywords

Neurosciences | auditory, exocytosis, presynaptic terminal, sensory, stereocilia, visual

Department

Department of Neuroscience

Language

en_US

Source

This work is sponsored by the Stony Brook University Graduate School in compliance with the requirements for completion of degree.

Identifier

http://hdl.handle.net/11401/72725

Publisher

The Graduate School, Stony Brook University: Stony Brook, NY.

Format

application/pdf

Abstract

The primary receptor cells of the visual, auditory, vestibular and lateral line systems encode a broad range of sensory information by modulating the tonic release of the neurotransmitter glutamate in response to graded changes in membrane potential. The output synapses of these neurons are marked by structures called synaptic ribbons, which tether a pool of releasable synaptic vesicles at the active zone. Despite the importance of the ribbon in synaptic transmission, the molecular mechanisms that govern the assembly and function of the exocytotic machinery in these terminals are poorly understood. We have identified a subfamily of SNARE complex regulators, composed of complexin 3 and complexin 4, which are enriched in ribbon-containing sensory neurons. Phylogenetic analysis reveals that there are two complexin 3 paralogs and three complexin 4 paralogs in zebrafish. Complexin 3/4 is rapidly targeted to photoreceptor presynaptic terminals in the zebrafish retina and pineal organ concomitantly with RIBEYE, a member of the CtBP family of transcriptional corepressors that is the major component of ribbons. In hair cells of the inner ear and lateral line, however, complexin 3/4 immunoreactivity clusters on the apical surfaces of hair cells, among their stereocilia. While a complexin 4a-specific antibody and riboprobe selectively label visual system ribbon-containing neurons, neuromasts and the inner ear contain complexin 4b. Complexin 4a knockdown in vivo perturbs visual background adaptation and optokinetic responses, indicating that these mutants are blind, without grossly affecting photoreceptor presynaptic architecture. Complexins may have additional functions during development since modulation of complexin 3a levels via knockdown or overexpression induces pleiotropic effects on dorsoventral patterning and eye development. Taken together, these results provide evidence for the concurrent transport and/or assembly of multiple components of the active zone in developing ribbon terminals. Members of the complexin 3/4 subfamily are enriched in these terminals in the visual system and in hair bundles of the octavolateral system, suggesting that these proteins are differentially targeted and have multiple roles in ribbon-containing sensory neurons. Furthermore, these results implicate complexin 3 and complexin 4 as candidate genes for hereditary visual, auditory, and vestibular disorders.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.