Authors

Paichuan Chen

Type

Text

Type

Dissertation

Advisor

Reich, Nancy C. | Nanct Medell R. Mendell | Wei Zhu | Derek Gordon.

Date

2010-08-01

Keywords

Statistics -- Biology, Biostatistics | exponential survival analysis, Mixture Survival Analysis, Quandt Ramsey

Department

Department of Applied Mathematics and Statistics

Language

en_US

Source

This work is sponsored by the Stony Brook University Graduate School in compliance with the requirements for completion of degree.

Identifier

http://hdl.handle.net/11401/70907

Publisher

The Graduate School, Stony Brook University: Stony Brook, NY.

Format

application/pdf

Abstract

The mixture of two regression regimes has been extensively studied in economics. A switching regression is often used to model a system that changes depending on some variables. The test of a mixture of regimes in hazard modeling would be seen to have fundamental importance in biostatistical research but has not been studied. A two-regime parametric mixture is proposed to model the effect of a single covariate on the event time. Typically, the Cox proportional hazards model is applied to estimate a single regime survival regression function. The mixture of two regimes model contains five parameters to be estimated; namely, two parameters to describe each regime, and one to describe the mixing proportion. A software program developed for this research finds the maximum likelihood estimates of the parameters and the likelihood ratio test of the null hypothesis of a single regime against the alternative of a mixture of two regimes. A simulation study finds an approximation to the null distribution of the test and its approximate power.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.