Type

Text

Type

Thesis

Advisor

Schneble, Dominik A | Kiryluk, Joanna | Kharzeev, Dmitri.

Date

2012-12-01

Keywords

Cascades, Glashow Resonance, IceCube, Neutrino | Physics--Astrophysics--Particle physics

Department

Department of Physics

Language

en_US

Source

This work is sponsored by the Stony Brook University Graduate School in compliance with the requirements for completion of degree.

Identifier

http://hdl.handle.net/11401/71362

Publisher

The Graduate School, Stony Brook University: Stony Brook, NY.

Format

application/pdf

Abstract

IceCube is a one cubic kilometer neutrino telescope at the South Pole. Its primary goal is to discover high energy cosmic neutrinos and anti-neutrinos from astrophysical sources. Observation of the spectrum near the characteristic energy $E_\nu\approx6.3\,\mbox{PeV}$ of the Glashow resonance, the interaction of anti-neutrinos with atomic electrons via $\bar{\nu}_e+e^{-}\rightarrow W^{-}$, is of particular interest. Since the cross section for this process can be calculated from first principles, it is possible to quantify separately the fluxes for neutrinos and anti-neutrinos if the resonance is observed above a continuum. In turn, such a separation will give unique insights into the astrophysics properties of the sources.\\ We conducted the first IceCube performance studies and optimizations for likelihood-based algorithms to reconstruct (anti-)neutrino-induced particle showers (cascades) in the energy range of the Glashow resonance using simulated data from electron (anti-)neutrino Monte Carlo generators and detector response simulations. For hadronic showers in the energy range $1\,{\rm{PeV}}

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.