Authors

Young Woo Nam

Type

Text

Type

Dissertation

Advisor

Martens, Marco | Lyubich, Mikhail | Schul, Ranaan | Tresser, Charles.

Date

2011-12-01

Keywords

Cantor attractor, Henon map, renormalization, unbounded geometry, universality | Mathematics

Department

Department of Mathematics

Language

en_US

Source

This work is sponsored by the Stony Brook University Graduate School in compliance with the requirements for completion of degree.

Identifier

http://hdl.handle.net/11401/71358

Publisher

The Graduate School, Stony Brook University: Stony Brook, NY.

Format

application/pdf

Abstract

The three dimensional Henon-like map is defined on the cubic box domain. The geometric properties of Cantor attractor of F are studied. The Jacobian determinant of nth renormalized map is expressed asymptotically using the universal map. The set of the model maps, M is invariant class under renormalization. If there exist C^r invariant surfaces under model maps, then the geometric properties of Cantor attractor of F in M is involved with the same properties for the two dimensional Henon-like map. In particular, the non rigidity and the typical unbounded geometry of Cantor attractor are proved. Another invariant class under renormalization, N is defined by the particular equation of partial derivatives of third coordinate map of F. In contrast with the maps in M, the result of two dimensional Henon renormalization is not applied to the map in N. Instead the non linear scaling maps are analyzed in a direct way with recursive formulas. However, same geometric properties of Cantor attractor, in particular, non rigidity and typical unbounded geometry are also proved for the map in the class N. | 194 pages

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.