Authors

Peter Gin

Type

Text

Type

Thesis

Advisor

Koga, Tadanori | Dudley, Michael | Sokolov, Jon.

Date

2012-12-01

Keywords

Green processing, Polymer thin films, Supercritical carbon dioxide | Engineering, Materials Science

Department

Department of Materials Science and Engineering

Language

en_US

Source

This work is sponsored by the Stony Brook University Graduate School in compliance with the requirements for completion of degree.

Identifier

http://hdl.handle.net/11401/71234

Publisher

The Graduate School, Stony Brook University: Stony Brook, NY.

Format

application/pdf

Abstract

The utilization of supercritical fluids (SCFs) has recently become prominent in a number of polymer processes such as inducing the ordering of block copolymer templates, synthesizing nanoporous material, and spatially distributing nanoparticles in a matrix. For such processes, conventional techniques have relied heavily on the use of toxic organic solvents such as chloroform and toluene. In contrast, certain SCFs, such as supercritical carbon dioxide (scCO2), have been distinguished as a "green" alternative because they are nontoxic, nonflammable, and inexpensive. Furthermore, the easily attainable critical temperature and pressure (Tc=31.3 ??C and Pc=7.38 MPa, respectively) make it an ideal solvent choice for polymers that degrade at low temperatures. In the following, I describe the research characterizing the effects of scCO2 on polymer thin films and brushes, specifically their swollen structures. This was achieved using multiple tools including, Neutron Reflectivity, X-Ray Scattering, and various microscopy techniques. I also present and recommend on-going and future work. | 37 pages

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.