Type

Text

Type

Thesis

Advisor

Swanson, Robert Lawrence | Wilson, Robert E. | Cuomo, Carmela

Date

2012-05-01

Keywords

headland gyre, Hypoxia, Long Island Sound, Smithtown Bay | Physical oceanography

Department

Department of Marine and Atmospheric Science

Language

en_US

Source

This work is sponsored by the Stony Brook University Graduate School in compliance with the requirements for completion of degree.

Identifier

http://hdl.handle.net/11401/71150

Publisher

The Graduate School, Stony Brook University: Stony Brook, NY.

Format

application/pdf

Abstract

Summertime hypoxia regularly occurs in the bottom waters of Smithtown Bay, Long Island Sound. Hypoxia, defined in this study as <3.0 mg O2 L-1, is plaguing many of our coastal estuaries and can be detrimental to aquatic organisms. A generally accepted model for the cause of coastal hypoxia in temperate regions is the establishment of seasonal water column stratification and the introduction of anthropogenic nutrients from sewage treatment plants, combined sewer overflows, agricultural fertilizers, urban runoff, sediment remineralization, and atmospheric deposition. However, there are no major point sources of anthropogenic nitrogen that discharge directly into Smithtown Bay. Despite great efforts to reduce nitrogen loading into Long Island Sound, summertime hypoxia is a continuing occurrence in Smithtown Bay. While hypoxic conditions remain seasonally prevalent in the bay, the surrounding bottom waters have considerably higher concentrations of dissolved oxygen. This study examines the causes of hypoxia in Smithtown Bay and how the problem is more complex than the introduction of anthropogenic nitrogen. Strong, thermally controlled stratification and mid-depth pycnoclines inhibit vertical mixing and the replenishment of dissolved oxygen to bottom waters. The two headlands, Crane Neck and Eatons Neck, may be creating a partial boundary between the bay and the rest of the Sound, preventing lateral mixing. This results in weak currents and bottom stress and a limited exchange of water masses over a tidal cycle. Furthermore, the classical headland gyre setting may increase the residence time of suspended particulate material transported from land into Smithtown Bay. The trapped particulate material inside the bay will sink and increase the consumption of bottom water dissolved oxygen. It appears, from these results, that Smithtown Bay is physically predisposed to hypoxia. For this reason, it is likely that the current management solution to hypoxia of implementing total maximum daily loads of nitrogen will not alleviate the hypoxia problem in Smithtown Bay. | 111 pages

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.