Authors

Bryan L. Clark

Type

Text

Type

Dissertation

Advisor

Samulyak, Roman | Jiao, Xiangmin, Glimm, James | Qin, Hong

Date

2012-05-01

Keywords

discrete mesh, finite element method, general finite difference method, mean curvature flow, surface diffusion, surface laplacian | Applied mathematics Ð Computer science Ð Mathematics

Department

Department of Applied Mathematics and Statistics

Language

en_US

Source

This work is sponsored by the Stony Brook University Graduate School in compliance with the requirements for completion of degree.

Identifier

http://hdl.handle.net/11401/71019

Publisher

The Graduate School, Stony Brook University: Stony Brook, NY.

Format

application/pdf

Abstract

Geometric partial differential equations, such as mean-curvature flow and surface diffusion, are challenging to solve numerically due to their strong non-linearity and stiffness, when solved explicitly. Solving these high-order PDEs using explicit methods would require very small time steps to achieve stability, whereas using implicit methods would result in complex nonlinear systems of equations that are expensive to solve. In addition, accurate spatial discretizations of these equations pose challenges in their own rights, especially on triangulated surfaces. We propose new methods for mean curvature flow and surface diffusion using triangulated surfaces. Our method uses a weighted least-squares approximation for improved accuracy and stability, and semi-implicit schemes for time integration for larger time steps and higher efficiency. If mesh element quality is initially poor, or becomes poor through evolution under mean curvature flow or surface diffusion, we utilize mesh adaptivity to improve mesh quality and proceed further in evolution. Numerical experiments and comparisons demonstrate that our method can achieve second-order accuracy for both mean-curvature flow and surface diffusion, while being much more accurate and stable than using explicit schemes or alternative methods. | 84 pages

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.