Type

Text

Type

Dissertation

Advisor

Sirotkin, Howard I. | Joel Levine | Gary Matthews | Vitaly Citovosky.

Date

2010-05-01

Keywords

Biology, Neuroscience -- Developmental Biology -- Biology, Genetics | Gli, neural tube, REST/NRSF, Sonic Hedgehog, Transcription factor, zebrafish

Department

Department of Neuroscience

Language

en_US

Source

This work is sponsored by the Stony Brook University Graduate School in compliance with the requirements for completion of degree.

Identifier

http://hdl.handle.net/11401/70993

Publisher

The Graduate School, Stony Brook University: Stony Brook, NY.

Format

application/pdf

Abstract

The spatial and temporal control of gene expression is key to generation of specific cellular fates during development. Studies of the transcriptional repressor REST/NRSF (RE1 Silencing Transcription factor/Neural Restrictive Silencing Factor) have provided important insight into the role that epigenetic modifications play in differential gene expression. Functional studies place REST within multiple developmental pathways and transcriptional networks. However, findings between different groups are often incongruent, and little progress has been made on understanding the embryonic lethality of the Rest knockout mice. What emerges from the controversies surrounding REST function is that the cellular context of REST is paramount. Here, zebrafish embryos are used to study REST function within the broader context of a developing organism. The approach was to assay changes in gene expression following Rest knockdown in various backgrounds. This method revealed a novel interaction between zebrafish Rest and the Hedgehog (Hh) signaling pathway. It was observed that Rest knockdown enhances or represses Hh signaling in a context-dependent manner. In wild-type embryos and embryos with elevated Hh signaling, Rest knockdown augments transcription of Hh target genes. Conversely, in contexts where Hh signaling is diminished, Rest knockdown has the opposite effect and Hh target gene expression is further attenuated. Epistatic analysis revealed that Rest interacts with the Hh pathway at a step downstream of Smo. Furthermore, the findings demonstrate that the bifunctional transcription factor Gli2a is key to Rest modulation of the Hh response. The role of Rest as a regulator of Hh signaling has broad implications for many developmental contexts where REST and Hh signaling act.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.