Type

Text

Type

Thesis

Advisor

Christopher Gobler | Peterson, Bradley J. | Eric Bricker.

Date

2010-05-01

Keywords

Biology, Oceanography -- Conservation -- Biology, Molecular | Conservation, Eelgrass, Genetics, Long Island, Microsatellite, Zostera

Department

Department of Marine and Atmospheric Science

Language

en_US

Source

This work is sponsored by the Stony Brook University Graduate School in compliance with the requirements for completion of degree.

Identifier

http://hdl.handle.net/11401/70946

Publisher

The Graduate School, Stony Brook University: Stony Brook, NY.

Format

application/pdf

Abstract

The dominant species of seagrass in NY, Zostera marina, has experienced several historical die-offs and is currently under heavy stress due to water quality and other anthropogenic problems. The consequences of these events on the genetic diversity and population structure of the remaining grass beds are unknown. This thesis addresses questions regarding the genetic diversity of extant populations, and how this information can aid current conservation and restoration efforts. Plant morphometrics and genetic samples of Zostera marina were collected at sites across Great South Bay, Shinnecock Bay, Peconic Bay and the Long Island Sound. Each individual was genotyped at 8 different microsatellite loci. Analysis of microsatellite alleles was used to examine the genetic diversity, population structure and gene flow between meadows within and between bays. Moderate levels of clonal and genetic diversity were exhibited across all study areas. No evidence of local inbreeding or of a severe population bottleneck was found. With the exception of individuals sampled from around Fishers Island in the Long Island Sound, connectivity is high within and between the major Long Island estuaries examined in this thesis. These results suggest the existence of an abundance of potential donor material from Great South Bay, Shinnecock Bay and the Peconics suitable for transplant within or between any of the three bays based on genetic criteria. However, continued monitoring of genetic diversity and additional documentation and small-scale sampling of future restoration efforts is important in maintaining current levels of genetic diversity.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.