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Abstract: 

Municipal solid waste (MSW) is generated in very large quantities (probably, between 200 and 

400 million tonnes per year) in the United States (US). MSW is generated at millions of places 

and there is no one precise, general definition for MSW that is generally applied, despite US 

Environmental Protection Agency efforts. As an element of both commerce and politics, 

reporting may be framed towards particular ends. Therefore, the two best known assessments of 

the quantity of US MSW production differ by approximately 50%. The assessors understand 

some of the reasons for the differences, but our analysis suggests that there are profound factors, 

not openly discussed, that affect estimates of waste stream size. Many regulators propose that 

strict, universal formats be adopted so that there is consistency in waste reporting; we note that 

this will not change the materials requiring management, only what is counted. Therefore, the 

most accurate assessments may be those where controllable errors are minimized but which 

suffer from differing definitions of “MSW.” 
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Introduction 

Large quantities of materials in the United States (US) become municipal solid waste (MSW) – 

2-3 kg person-1 day-1, incrementally amassing to 200-400 million tonnes each year. MSW 

management is an integral part of modern civic life, and is important to many Americans. 

Conventionally, husbands take out the trash several times a week, inevitably small children are 

fascinated by garbage trucks, and “more people recycle than vote” (attributed to Jerry Powell, 

Editor, Resource Recycling Magazine; first citation, Miller 2000). 

The US Environmental Protection Agency (USEPA) defines MSW as materials that  

“historically have been handled in the municipal solid waste stream–those materials from 

municipal sources, sent to municipal landfills … such as product packaging, newspapers, office 

and classroom papers, bottles and cans, boxes, wood pallets, food scraps, grass clippings, 

clothing, furniture, appliances, automobile tires, consumer electronics, and batteries. … 

[M]unicipal solid waste … does not [USEPA’s emphasis] include construction and demolition 

debris, biosolids (sewage sludges), industrial process wastes, or a number of other wastes that … 

may go to a municipal waste landfill” (USEPA undated).  

This definition differs slightly from that of the OECD: 

“Municipal waste is waste collected and treated by or for municipalities … from households, 

including bulky waste, similar waste from commerce and trade, office buildings, institutions and 

small businesses, yard and garden waste, street sweepings, the contents of litter containers, and 

market cleansing waste … exclud[ing] waste from municipal sewage networks and treatment … 

[and] … construction and demolition activities” (OECD undated).  



and also the European Union: 

“waste generated by households and other wastes, which are similar in nature and composition, 

collected and managed by or on behalf of municipal authorities… [primarily] from households, 

though similar wastes from … commerce, offices and public institutions are included … 

including paper, plastics, food, glass, and household appliances” (Eurostat 2010). 

Thus authorities do not exactly agree on the definition of MSW, and practitioners of waste 

management may not always count their wares in ways that agree with official definitions. Thus, 

it is not surprising that MSW in the US is difficult to track well. USEPA estimated that 249.6 

million tons (226.4 million tonnes) of MSW were generated in the US in 2008 (USEPA 2009), 

which is 4.50 lbs person-1 d-1 (2.04 kg person-1 d-1). BioCycle magazine found US MSW 

generation for 2008 to be 389.5 million tons (353.4 million tonnes) (van Haaren et al. 2010), 

7.02 lbs person-1 d-1 (3.18 kg person-1 d-1) – about 50% more. These differences have been noted 

for decades (Figure 1). Some reasons for the differences are well-known (e.g., Rathje 1989, 

Goldstein 2000, Miller 2007, Kaufman & Themelis 2009, Chowdhury 2009, USEPA undated, 

USEPA 2010); they partially stem from methodological differences in counting wastes – what 

USEPA (undated) distinguishes as “site specific” and “materials flow” approaches. We will also 

suggest there are some underlying uncertainties in how these methods generate their data. To 

approach this issue, first we describe how these surveys are conducted, and then we examine the 

bases of the processes they use.  

USEPA (Franklin Associates) Materials Flow Quantifications 



The formation of USEPA in 1970 moved federal regulation and oversight of solid waste 

management from the US Public Health Service (USPHS). From 1966 through 1970, USPHS 

engineers had estimated solid waste quantities (and composition) by using waste sorts conducted 

in support of incineration projects (Hickman 2003), work apparently conducted to optimize the 

combustion processes. USEPA recognized that waste sorts produce information of limited value;   

as waste stream sampling is valid only for particular places and times; it took until the 1990s for 

USEPA to define for itself a satisfactory sampling protocol to conduct waste composition audits 

(and also to sample waste generation at facilities without scales) (Klee 1992).  

USEPA therefore worked with various environmental engineering firms and an economic 

analysis firm, Franklin Associates, to devise an “input/output” assessment model for estimating 

the composition of solid waste in a different fashion. The flow of materials from plants that 

manufacture goods was traced into finished products and then into the marketplace, including 

imports and excluding exports and process wastes; the residence time of those products in 

homes, businesses and institutions was estimated, as were the amount of materials set out for 

management, either through recycling and other recovery processes, or discard processes 

(landfilling and incineration). This was known as the “material flows” process (Smith 1975). 

Over time, Franklin Associates has refined data collection and the processes that drive the model. 

Better data mean that uncertainties that existed in the 1970s have been reduced, such as those 

regarding processing and distribution steps that affect the proportion of a material that becomes 

part of a product, or quantities of imports and exports (USEPA undated). 

Clearly some solid wastes are not created in ways amenable to capture by the model, such as 

food and yard wastes. The earliest iterations of the model relied on one or two site specific 



sampling efforts of these materials that USEPA described as “being done well” (Smith 1975); 

currently, “selected waste sorts” are used to estimate waste quantities for yard and food wastes 

for the model. In the 2009 Waste Characterization report, food waste generation is documented 

by 69 references: 19 are reports or personal communications dated in 2009 or 2010, and six 

others are undated but likely to be up-to-date. The recent sampling efforts are for a range of 

sources, including businesses (e.g., Kroger supermarkets and Walmart), colleges and 

universities, municipalities (large cities like Boston or smaller areas such as Orange County, NC, 

for instance), or institutions (like hospitals). Approximately half of the references are from 

studies conducted before 2009, with one quarter of the references from the 1990s. The 75 

references for yard waste include more late 2000s studies, and it is clear Franklin Associates 

contacted some state regulators directly for current information. However, all states were not 

contacted (or at least, all were not referenced), although a catch-all reference of Franklin 

Associates “surveys of selected state officials and websites” is included. The tables reflect that 

food waste increased by a little less than 1 million tonnes from 2008 to 2009, and yard wastes 

increased by nearly 300,000 tonnes (USEPA 2010). 

Because the USEPA data are generated by the application of a materials flow input/output 

model, the data sets can change as the model is updated. Therefore, the amount of 2008 MSW 

reported in the 2008 report (249.61 million tons) (226.45 tonnes) (USEPA 2009) is different 

from the 2008 MSW reported in the 2009 report (251.02 million tons) (227.73 tonnes) (USEPA 

2010), which may lead to confusion for those keeping track (even if only by 0.5%). 

USEPA explicitly states that its assessments describe a specific set of materials: the wastes from 

residences, businesses, and institutions. This focus is on materials that are in commerce. The 



accounting does not include most hazardous wastes, construction and demolition debris (C&D), 

sewage sludges, and industrial process wastes. It is also noted that an undefined “number of 

other wastes that … may go to … landfill[s]” are not included – presumably, materials such as 

street sweepings, dredge spoils, etc., that are not part of general day-to-day activities associated 

with commerce. USEPA-defined MSW does not include junked cars and trucks and combustion 

ashes. The materials flow process does not allow for determinations of the source of wastes 

within the generator types (i.e., whether paper goes to residences or businesses or institutions) 

(USEPA 2010). 

USEPA also reports on the management of the quantified wastes, through a process of 

elimination. Manufacturers provide data on the use of recovered materials, and this is 

supplemented by export data, which generally limns recycling. Composting is apparently 

determined from state information sources and industry reporting, such as in BioCycle; the sum 

of materials recovery and composting is the overall recovery total. Waste-to-energy incineration 

is determined through reviewing regulatory reporting. The gross tonnage is adjusted because 

some plants burn materials not considered to be MSW. Landfilling is determined from the 

remainder (USEPA 2010, H. Pillsbury, USEPA, personal communication, October 2010). 

This model calculates the specific materials that comprise the waste stream. This makes it 

possible to track the material composition of MSW and to estimate the percentages of specific 

materials that are recovered and landfilled, although this subject is not covered here. 

BioCycle Assessments (Site Specific Quantifications) 



The editors of BioCycle Magazine conduct periodic waste assessment studies that differ from 

USEPA assessments in some ways, but are similar in others (Table 1). The 2008 national waste 

survey was said to be its 17th such survey, although only 16 years of reports (1989-2000, 2002, 

2004, 2006, 2008) have been made. BioCycle bases its data on facility reports, aggregated by the 

states, so that waste generation is the sum of recycling, composting, incineration, and landfilling 

(recycling and composting can be considered together as an overall recycling value). Waste 

reduction is not addressed. Magazine staff compiled the data through 2000; for 2002 and 

subsequent biennial reports, Columbia University staff and students (under the direction of N. 

Themelis) were responsible (van Haaren et al. 2010). 

The earliest surveys note various difficulties with the data – some data were collected in previous 

years, some were disposal tonnages only, some were estimates based on a variety of local 

information collected over lengthy intervals. However, BioCycle has consistently reported more 

waste than USEPA. One clear difference was that disposal tonnages at landfills, and sometimes 

recycling data, included waste elements USEPA did not allow in its assessments, such as C&D 

and automobile recycling, and C&D disposal (e.g., Goldstein 2000). 

The Themelis group at Columbia University changed some previous data collection practices, 

emphasizing aggregated tonnage data for the management processes in place of calculations 

based on reported percentage rates applied to an overall generation tonnage (van Haaren et al. 

2010). The Themelis group worked to identify misallocated C&D and other “non-MSW” (per 

USEPA), primarily by asking to have these excluded by respondents, and through close reading 

of reports. They also tracked exported and imported MSW to assign wastes to the generating 

state (Kaufman & Themelis 2009). Recycling at the state level was found to have the potential 



for great error (Simmons et al. 2006a, Kaufman & Themelis 2009), although one self-analysis 

generally found the reported tonnages were accurate (Simmons et al. 2006b).  

The BioCycle reports, even under the direction of the Themelis group, have suffered from 

incomplete participation. For instance, the first Columbia-led assessment had to be adjusted 

because three states did not supply any data (these states, comprising only 3% of the US 

population, were assumed to generate and manage MSW similarly to the rest of the states), and 

three other states did not provide data in the requested formats. This latter category included the 

two largest states, California and Texas. California was assigned the same waste generation rate 

as Nevada, and Texas was assigned the average of the 44 remaining states, although reasons for 

these assignments were not provided (Themelis & Kaufman 2004). In 2004, only 39 states 

provided data that was in the requested formats. For states that did not provide data or did not 

conform with the format, tonnages for facilities within these states were estimated with the use of 

the Waste Business Journal “Directory and Atlas of Non-hazardous Waste Sites,” coupled with 

further research efforts to collect reports from regulatory agencies (Simmons et al. 2006a). When 

the Waste Business Journal did not participate in later reports, “past data” were used to project 

waste generation for non-responding states. A report on Materials Recycling Facility tonnages 

within each state (the Berenyi GAA Survey) has also been used to estimate recycling; the 

researchers doubled the Berenyi GAA Survey state facility tonnage for non-reporting states, 

because a comparison between the reported recycling tonnages for states that responded to the 

Columbia researchers’ inquiries were generally twice as great as the tonnages reported for those 

states in the Berenyi GAA reports (Arsova et al. 2008). 



The BioCycle reports thus combine state data, adjusted state data, projections from past 

estimates, facility surveys, and projections from facility data. 

State quantity assessment practices 

Although the Themelis group processed state reports to generate its data, the raw data provided 

by such agencies were central to its procedure. The Themelis group has assessed disposal data as 

being generally accurate, because disposal sites regularly submit waste processing data to 

regulators as part of permit compliance. Recycling data for traditional (curbside) recyclables was 

considered less reliable, and composting data were the least reliable (Kaufman & Themelis 

2009). 

Here we review data compilations from four states, in particular: brief reviews of Oregon and 

Nevada (selected because they used differing albeit rather straightforward reporting procedures), 

California (selected for its very arcane reporting and because the Themelis group had specifically 

audited its recycling tonnages carefully for one year), and New York (which has evolved its 

reporting over the past 15 years for a variety of reasons, leading to some interesting findings) 

(see Table 2). 

Oregon 

Oregon calculates recovery rates each year based on data from designated “wastesheds” 

(geographic subdivisions of the state) (although state-wide per capita values are sometimes 

added if no particular source is responsible for tracking a type of waste). Reports from public and 

private recycling and disposal facilities are compiled, and extra credits for waste reduction and 

composting are given if certain criteria are met. Recycling reporting is voluntary. The sole 



Oregon waste-to-energy incinerator receives certain recycling credits, mandated by law. Oregon 

aims to capture data on post-consumer wastes, and does not include industrial wastes; it also 

excludes out-of-state materials, inert materials (e.g., brick and concrete), and automobile scrap. 

Over half of the wastesheds received waste reduction credits; and 22% of recycling credits were 

from “combustion” (apparently mostly waste wood or tires burnt for energy). In 2008, Oregon 

reported generating 5,233,647 tons (4,747,965 tonnes), recovering 2,233,509 tons (2,026,239 

tonnes) (Oregon Department of Environmental Quality 2009). BioCycle reported 13% lower 

waste generation (4,632,513 tons) (4,202,616 tonnes), which may be coincidentally similar to the 

2009 Oregon state reported waste generation (4,671,845 tons) (4,238,298 tonnes) (Oregon 

Department of Environmental Quality 2010). To be consistent with their protocols, it appears 

that the BioCycle researchers should have moved the combustion data from recovery to disposal 

and excluded the waste reduction and incineration recycling credits. 

Nevada 

Nevada reports its waste stream biennially, as required by its legislature. Its constituent counties 

file reports using a specified format to ensure all data are comparable. In 2007, 3,245,596 tons 

(2,944,133 tonnes) of Nevada-generated wastes were disposed (excluding industrial and special 

wastes, and out-of-state wastes disposed in Nevada), and 894,652 tons (811,628 tonnes) were 

recycled. “Disposal” means materials disposed in a landfill that were generated within the 

surveyed county; industrial and special wastes (including C&D) are counted separately. 

Recyclables do not include C&D, but do include sewage sludge (called biosolids by Nevada); 

materials not specified on the reporting form can be counted on a special line, but no county used 

that option in 2006 and 2007 (Nevada Department of Conservation and Natural Resources 



undated). We could not find any on-line 2008 data. BioCycle reported in 2008 there were 

3,299,832 tons (2,993,608 tonnes) of disposal, 229,128 tons (207,865 tonnes) of recycling, and 

85,271 tons (77,358 tonnes) of composting. This is a much lower overall recycling total and a 

lower overall waste generation rate than Nevada had reported in 2007. 

California 

California is a special case. The legislature has passed a 50% disposal reduction mandate for all 

municipalities. Because waste diversion was recognized as being important, a waste generation 

rate in a base year (1990, originally) was set, against which progress would be measured towards 

waste diversions in subsequent years. A constant base waste generation does not reflect 

important waste generation issues, such as growth in local industries, changes in land use from 

commercial to residential, waste imports, or decreases in self-hauling (13% of all California 

waste was self-hauled in 1990, and state reports assume this rate has decreased since then). In 

2000, an adjustment formula was created, and was used by 20% of the jurisdictions subject to the 

mandate. For California reporting purposes, waste generation is modeled, starting with the base 

waste generation as modified by population and economic changes. To compute compliance with 

the mandate, waste generation by regulated municipalities (cities or counties) is compared to 

disposal data, as reported in the state disposal tracking system. California includes inert materials 

(C&D materials, for instance) and special wastes (e.g., sludges including sewage sludge, ash 

including waste-to-energy incinerator ash, and asbestos) as materials subject to this assessment. 

Alternate cover material for landfills (e.g., C&D or composted yard wastes) is considered a 

recovered material (California Integrated Waste Management Board 2001). This makes 

California waste stream assessments different in many ways from those done in other states.  



Kaufman & Themelis (2009) created a California waste definition that was similar to other state 

reports, using some unique reporting for 2005. They combined 2005 State-wide disposal 

tonnages with a disposal characterization report from 1999, and estimated 29% of California’s 

reported disposal tonnage was not MSW (per USEPA’s definition, which has been adopted for 

the BioCycle reports). Then, they back-calculated recycling tonnages based on a report on 2005 

facility residuals and residual rates, adding in 20% of the nationwide total of a 2005 “direct to 

recycler” report. Finally, they used a 2005 state-wide mulch and compost production report, 

subtracting tonnages that were used for alternative landfill cover and agriculture and sewage 

sludge inputs. In this manner, the 2005 state-wide waste total was estimated to be 49,925,000 

tons (45,300,000 tonnes) with a recycling rate of 38.9%. 

New York 

For many years New York State had two official waste stream assessments, one conducted by 

the legislature and the other by the executive branch (the State Department of Environmental 

Conservation – NYSDEC). In 1997 the reports covered the target tenth year of the State Solid 

Waste Management Plan. The Plan originally sought 50% recycling; in the mid-1990s, NYSDEC 

refined the goal to include waste reduction (predefined as an 8-10% effect, lacking any good 

baseline data), so that meeting the new recovery goal required a 42% recycling rate. Both 

assessments were based on reporting required from local municipalities, using State-generated 

standard forms, and sometimes followed up with telephone interviews; however, unlike Nevada, 

many responders used idiosyncratic methodologies to complete the forms.  

In 1997 the two reports differed in important ways (Table 3). Although NYSDEC found a greater 

recycling rate than the legislature did, its 30% rate was less than the 1997 goal. NYSDEC 



concluded that some recycling had not been included, such as container deposit law returns 

(290,000 tons) (260,000 tonnes), metals (910,000 tons) (825,000 tonnes) and paper (1,400,000 

tons) (1,250,000 tonnes) exported through New York harbor, and “beneficial use determination” 

materials (mostly alternate cover materials for landfills) (2,510,000 tons) (2,275,000 tonnes). 

These credits boosted the recycling total to 12.5 million tons (11.3 million tonnes), the total 

waste stream to 29.9 million tons (27.1 million tonnes), and the recycling rate to 42% (NYS 

Department of Environmental Conservation 1998). For 1998, NYSDEC estimated the State 

recycling rate would have been 36% compared to the reported 44% if it included only USEPA-

defined MSW in its assessments (NYSDEC 2000). By 2006, although State population had not 

grown much at all since 1998, NYSDEC counted more than 40 million tons of waste generation 

(over 12 lbs person-1 d-1 [5.5 kg person-1 d-1], more than 250% of the USEPA rate and more than 

150% of the BioCycle rate), and the state recycling rate was set at approximately 50%. NYSDEC 

also computed a “traditional” recycling rate that was closer to 30%, although how that 

computation was made was never specified (data drawn from public meeting Powerpoint 

presentations by NYSDEC personnel, 2006-2008). 

When it released its draft State Solid Waste Management Plan in 2010, NYSDEC had 

recalculated the size of the state waste stream. This was apparently done only using facility 

reports (from landfills, incinerators, recycling facilities, and transfer stations), rather than 

beginning with data from the constituent waste management authorities as had been the previous 

practice. The waste stream was found to be 17 million tons (a little more than 15 million tonnes), 

with 3 million tons (less than 3 million tonnes) recycled (a waste generation rate of 5.4 lbs 

person-1 d-1 [2.4 kg person-1 d-1], and a recycling rate less than 20%). The waste generation rate 

exceeded USEPA’s nationwide rate, and the recycling rate was much less than USEPA 



calculated for the nation as a whole. State planners found this was a signal that New York needed 

to reconsider its previous waste management policies, which clearly had been ineffective 

(NYSDEC 2010). 

Regional and local assessments 

Large cities (such as New York, Chicago, or Los Angeles) or regions (like Long Island) that are 

smaller than states sometimes conduct waste assessments covering their jurisdictions. Stony 

Brook University has reported waste generation information for Long Island several times 

(Tonjes & Swanson 1994, Tonjes & Swanson 2000, Tonjes 2007). Some issues identified above 

for state-level assessments are also found in regional assessments, and other issues that are not 

apparent at the state-level can be discovered at smaller geographical scales (Table 4). 

Some anomalies are introduced by facility practices (see below), but individual facility errors can 

be compounded by  including reports from more than one facility. On Long Island, one 

important issue was double-counting. Tonnages might be reported by the responsible 

municipality, and also by a facility to which the materials were delivered. Transfer stations are a 

locus for this, as they may receive wastes reported by the MSW source, in turn report the wastes 

managed at the transfer station, and deliver the wastes to another facility, which also reports the 

tonnages. Another issue is to identify waste imports and account for exports. Determining what 

to count and what to ignore is another source of discrepancies. Waste stream heterogeneity and 

business practices mean that waste loads may not fall into a single, classic waste category; C&D 

and land-clearing debris are often mixed with other materials, for instance, or are counted as 

MSW without distinction. When recovery rate maximization is a goal, because much of these 

wastes can be diverted from disposal, our local reports show and our experiences with the Town 



of Brookhaven (New York) have been that they are often included in MSW recycling totals 

(other materials that avoid standard disposal routes, such as junked automobiles and other scrap 

materials, or hazardous household waste collections, can be also commonly included in recycling 

data). Ensuring reports are consistent is another problem. Wastes that should be counted may not 

be (often because they are not managed at facilities that report data in the solid waste system, as 

when corrugated cardboard is delivered directly from a generator to a paper broker). Composting 

often causes counting issues. Some municipalities compost yard wastes but do not compute the 

tonnages involved, some produce partial totals of composted wastes, some make only crude 

estimations, and others include land-clearing debris in yard waste assessments. Others sum the 

total of materials present at a site each year, but neglect to subtract holdover material from 

previous seasons (Tonjes & Swanson 1994, Tonjes & Swanson 2000, Tonjes 2007).  

Demographics can cause problems. A common statistic in waste assessments is to calculate per 

capita waste generation rate. Long Island’s east end is a popular summer resort, with summer 

weekends often resulting in doubled populations. Jones Beach State Park can have over 4 million 

annual visitors. Undocumented aliens are often not included in population data. All of these 

people generate MSW but are not included in census data, the most common source of 

population information. Thus, selection of the denominator for per capita rates is not simple 

(Tonjes & Swanson 1994, Tonjes & Swanson 2000, Tonjes 2007). 

Facility reporting 

At the base of all these data assemblages are reports from individual facilities. Landfills and 

incinerators, recycling facilities, compost sites, and transfer stations almost always report some 



form of waste receipt data to some authority. These reports are generally considered as being 

accurate as received, but our experience suggests this may be a faulty assumption (Table 4). 

Measurement units can be an issue. An impetus for USEPA to adopt modeling was a general 

lack of scales at many facilities (Smith 1975). In the absence of actual weight data, estimates of 

weights based on volume (or other) conversions are often not accurate (Rushbrook & Ball 1988). 

When we began reporting on LI MSW in the early 1990s, many transfer stations did not have 

scales, and wastes deliveries were measured in volumes. Most waste fees were levied by volume, 

so these measurements supported the billing system. Outputs from transfer stations were in 

mixed units, as at some receiving facilities wastes or recyclables were charged or paid by weight; 

other facilities accepted materials by volumes, making accurate mass balances impossible to 

calculate (Tonjes & Swanson 2000). Some of these practices continue today. For instance, most 

C&D on Long Island is collected in uncompacted open containers, and pricing is by volume, so 

that received waste quantities are reported in cubic yards. Two C&D disposal landfills charge by 

volume, and one charges by weight. Therefore, wastes leaving C&D transfer stations may be 

reported both in cubic yards and tons, with those wastes delivered by volume also having been 

compacted, so that the reported total of managed volumes are less than the sum of received 

volumes. On Long Island, privately operated transfer stations often manage both MSW and 

C&D; outputs from facilities are often a combination of MSW sent to landfills, recyclables, and 

C&D residues. Materials collected as C&D may be managed as recyclables, C&D residues, and 

sometimes MSW (especially for some packaging materials); MSW may be parsed into 

recyclables, disposed MSW, and small amounts of C&D (wood wastes, for instance), if to do so 

is economically advantageous, and then various elements are measured by weight or volume (if 

by volume, likely at a different density than when received) (Tonjes 2007).  



There are also systematic and often intentional errors in waste reports. Small businesses, 

including waste handling facilities, are known to hide substantial proportions of income 

(Feldman & Slemrod 2007), and so it is not certain that waste reporting, from which income may 

be deduced, is being made accurately. Bornstein (2011) suggested carters in Los Angeles 

regularly underreport waste tonnages because they pay a per ton fee to the City for managing 

wastes. On the other hand, Rathje (1989) assumed carters were predisposed to overreport wastes, 

since many are paid on the basis of the amount of wastes handled. On Long Island, this situation 

was further muddied by many decades of organized crime domination of private carting (Reuter 

1987). So, waste tonnages may be misreported both high (so that rival firms do not try to 

underbid for a contract) or low (so as to misrepresent potential revenue streams), and thus 

economic incentive factors need to be understood in any accounting situation. On Long Island, 

carters collecting wastes under municipal contracts are, in some areas, charged no tip fee for 

wastes and recyclables, to ensure all municipally-collected wastes within the municipality come 

to the municipal facility (a form of economic flow control). However, this encourages the 

unauthorized collection of wastes from other areas or sites that should not receive the services, 

since the carters can thereby avoid paying a tip fee that might be due. One means of avoiding this 

system manipulation is for contractors to include a tip fee expense in their bid, and then pay a tip 

fee for all wastes brought to the municipal facility. But then the carter may then be tempted to 

divert wastes to lower cost facilities (without the municipality benefiting from the lower cost, nor 

receiving the revenue to balance the monies paid out to the carter under the contract). When 

recycling markets are strong, unlicensed scavengers increase their collection of set-out materials, 

or contract carters may divert recyclables themselves to enhance revenues. All of these “under 

the radar” practices can affect reports of waste generation.  



In New York State, facilities are required to keep scalehouse receipts to support periodic audits, 

but overworked regulators generally do not check these records (although judicial oversight of 

the New York area waste industry in the 1990s incidentally improved waste data accuracy due to 

aggressive prosecution of organized crime). We have direct experience in identifying errors from 

our role as preparer of annual reports for the Town of Brookhaven on Long Island. The Town 

transfers its MSW elsewhere for incineration, with the transfer trailers weighed out of the 

Brookhaven transfer station and in at the incinerator. There are only small (tens of tonnes) 

differences between the two transfer tonnages on an annual basis (out of approximately 200,000 

tonnes). However, incoming tonnage for the Brookhaven facility can be 1-3% greater than the 

outgoing tonnage (Table 5). Residential collection trucks, which bring 95% of the waste to the 

facility, weigh in, but pre-registered “tare” weights are used to minimize traffic on outbound 

scales. There is no apparent financial advantage, so there is no need to resolve the error, except 

to keep the books straight. Evaporation of moisture from the MSW, waste misdirection within 

the facility (the Town operates a landfill at the site, where residential MSW is not supposed to be 

disposed), copying errors when transferring data from one ledger to another, etc., have all been 

considered as sources of the discrepancies and dismissed. The main cause appears to be the tare 

weight system. Trucks are assigned a tare weight when initially placed in operation. However, 

the absence or presence of helpers on the truck, the amount of fuel in truck tanks, and, most 

probably, MSW adherence to the packer trucks (or liquid wastes that do not dump fully) – any 

error such that 50 kg truck trip-1 accrues – can easily create an accumulated annual difference of 

2,000 tonnes or more. These data affect analyses of the residential waste collection system, but 

that has not caused a need to increase traffic on the outbound scales (which takes time away from 



collection routes and also slows all other traffic, as collecting fees makes for longer outbound 

transactions) to measure the actual unloaded packer truck weights. 

The Town recycling facility managed only Town-generated materials for five years, but then the 

facility operator was encouraged to seek other sources of recyclables. We reported all facility 

data as Town-generated recyclables for a number of years, because at first the differences were 

inconsequential – and when the differences were noticeable, it required a change in well-

established practices, and led to a decrease in reported Town recycling rates, which was not well-

received. The facility receives mixed loads of materials from curbside set outs, but delivers 

individual materials to market. The Town has been reporting net tonnages of the individual 

materials. The Town therefore reports a smaller tonnage than its citizens set out for recovery, 

which is not the general practice in New York.  

The Town landfill manages two classes of C&D materials. Finely ground C&D is received, 

technically, as an alternate daily cover. Coarser C&D is classified as a waste material. The 

Town, by permit, is limited to apply only a certain percent use of alternate cover material, which 

is not counted towards the permitted daily tonnage limit at the landfill. Operationally, because 

C&D is not especially putrescible, covering wastes is not a priority, although finer materials 

inhibit fires by reducing air penetration into the waste mass. The important distinction, from the 

Town perspective, is a tip fee difference. At the end of reporting periods, the Town must 

calculate the allowed cover material tonnage. This may require diverting materials from cover to 

waste categories, as a bookkeeping transfer, to ensure regulatory compliance. Similar category 

transfers probably occur at other facilities, and suggest category accounts may not be accurate. 

Individual Waste Generators 



Households, businesses, and institutions constitute the sources of MSW, and in the US there are 

more than a hundred million households, and millions of businesses and institutions. If a waste 

generation rate could be established for each or for general classes of generators, then waste 

generation values could be incrementally determined as an alternative to materials flow and site-

specific reporting. 

Individual and household waste generation was determined for Indianapolis in 1972, based on 

aggregated samples from groups of 60-90 households, constituting one of the first published 

surveys of waste generation in small samples. Income, household size, and the age distribution of 

the residents were found to affect waste generation rates (Richardson & Havlicek 1978). These 

findings generally agreed with Wertz’s (1976) more theoretical findings that income (and the 

site, price, and frequency of garbage service) should affect waste generation. The Garbage 

Project at the University of Arizona began sorting and assessing individual household waste 

generation in Tucson in the early 1970s. It also assessed waste generation in a number of other 

locations. Amounts and types of wastes generated depended on a number of factors, most 

relating to socio-economics, but also including other human frailties and patterns of behavior 

(Rathje 1989, Rathje & Miller 2000). Pichtel (2005) collected data describing differences in per 

capita waste generation between single family housing and apartments, and by household and 

community size. Waste generation was also found to vary according to area of the country, and 

seasonally across years.  

Waste generation in businesses and institutions has long been assessed. Data about generation 

rates by federal Standard Industrial Classification (SIC) codes or similar measures are not hard to 

find, as early as 1970 (an example is still cited in Tchobanoglous 2009). Rhyner & Green (1988) 



reviewed three of the more comprehensive efforts from the early 1970s; McBean & Fortin 

(1993) collected a series of similar studies from the late 1980s. The units to describe waste 

generation for establishments vary. They are usually given by employee numbers, floor area, or 

sales (Pichtel 2005). California commissioned a study of commercial waste generation, 

organized by functional groups (such as fast food and full service restaurants, food stores, large 

hotels, big box retail stores, other retail stores, etc), in four metropolitan regions. The data were 

characterized as generation according to representative characteristics (per employee, per square 

foot, per room, per visitor) (Cascadia Consulting Group 2006). Peterson et al. (1995) found that 

the number of employees in a firm affected per capita waste generation rates inversely, and that 

the size of a company was often more significant than SIC coding in predicting waste generation. 

Franchetti (2010) approached the issue differently. His survey of 400 companies in 65 SIC 

categories found that waste generation and composition within SIC groups was homogenous. For 

non-manufacturing businesses, the number of employees was a good predictor of waste 

generation (he did not analyze floor area or sales as predictors). Other models of industry waste 

generation depended on combinations of employee numbers, ISO 1400 status, and several other 

predictors to estimate waste generation in manufacturing fields (Franchetti 2009). The many 

consultants who have long assessed individual business’s waste generation to establish recycling 

programs or otherwise control waste costs generally use simpler approaches, such as direct 

sampling and observation, or the multipliers discussed by Pichtel (2005) and Tchobanoglous 

(2009). The consultant data sets are not often published, however (see, for instance, a report on 

Los Angeles waste generation, prepared with Cascadia Consulting Group, at: 

http://www.zerowaste.lacity.org/files/info/fact_sheet/SWIRPGenDisposalFactSheet_032009.pdf)

. 



Rhyner & Green (1988) used a variety of estimation bases, primarily based on population, to 

model overall waste generation in a Wisconsin county. Some predictors had good results, but 

there were wide variations among the generated values. It is not clear how good estimators might 

be preselected. Kessler Consulting & Franklin Associates (undated) created a spread-sheet model 

for application in counties in Florida, adapting the USEPA model estimates using local inputs 

such as sampling data and SIC data. The Florida model can be recalibrated every time the 

USEPA model is iterated. Hockett et al. (1995) determined using linear regression that retail 

sales and tipping fees were significant predictors of variations in waste generation in North 

Carolina, but found a great deal of uncertainty, some based on the underlying waste accountings. 

McBean & Fortin (1993) created a model for Waterloo, Ontario, that used industry and 

household waste generation rates, and then conducted regression analyses using economic data 

to determine the effect on annual waste generation rates from economic variability. A model in 

Illinois, based on multivariate analysis of socioeconomic population descriptors, rank-ordered 

solid waste generation by county (Cailas et al. 1996), although it is not clear that meaningful 

State-level information is generated from rank ordering if the populations of the counties vary 

much.  

Beigl et al. (2008) identified household-level models as one of the general classes of models that 

are created to understand waste generation. They believed that regression analyses on household 

descriptors could generate predictive models for waste generation, recycling, and waste 

composition. 

Discussion 



The two primary data collection efforts disagree on many statistics, and on basic waste 

infrastructure facts (Table 6). For 2008, USEPA and BioCycle disagree on the number of 

landfills by about 100, although USEPA used (and cited) a BioCycle value (Arasova et al. 2008). 

Similarly, although they agree on the general scope of composting (as USEPA relies on 

BioCycle’s industry stature), they do not quite agree how much waste was composted (BioCycle 

found 24.5 million tons [22.2 million tonnes] and USEPA counted 22.1 million tons [20.0 

million tonnes] in 2008). They do not agree on the number of incinerators; BioCycle found 115, 

although it noted two did not burn MSW, and USEPA cited a 2007 source, finding 87. They did 

not agree on the tonnage managed at these facilities (25.9 million tons [23.5 million tonnes] by 

BioCycle, 31.6 million tons [28.7 million tonnes] for USEPA) (van Haaren et al. 2010, USEPA 

2010). Sewage sludge composting and incineration and clean wood incineration could be 

elements in the differences in data, although the Themelis group stresses it adjusts data so as to 

correspond with USEPA definitions. These differences suggest a more fundamental 

disagreement, that they are counting different things altogether. The incineration difference is 

striking – there are relatively few facilities in either assessment, and the smaller number of plants 

in the USEPA accounting managed a greater tonnage. Differences in landfilling tonnages are 

more understandable, especially since USEPA’s landfilling value appears to be indirectly 

computed simply as a remainder of the total, minus recycling and waste incineration. 

Rathje long criticized the USEPA methodology. He failed to find white goods in landfills, 

although USEPA data suggested they were being landfilled (because recycling data were less 

than modeled generation data), and he found C&D to be the greatest or second greatest single 

constituent in landfills. Errors and exclusions like these resulted in Rathje concluding that the 

USEPA data sets had little credibility (Rathje 1989, Rathje & Miller 2000). Alter (1989, 1993) 



suspected that the input-output analyses were insufficiently tested against actual waste stream 

data, but thought the data had the virtue of being “internally consistent.” The Themelis group 

states the modeling approach is not very good at determining disposal tonnages, especially at 

landfills, where the greatest discrepancy between the BioCycle and USEPA data is. They think 

that the model does a credible job determining curbside recycling, but is poor at tracking organic 

waste recoveries (Kaufman & Themelis 2009). 

Allen (2008) does not describe the USEPA waste descriptions as credible materials flow 

accounting, probably because it does not track materials prior to their incorporation into 

products. He found the Washington “Beyond Waste” tracking effort a better materials flow 

model. Washington State uses 12 indicators to track overall progress towards “sustainability” 

(Table 7), covering much more than waste management. Its materials flow conceptual model 

tracks inputs (raw materials, process goods that are not incorporated into finished goods, 

components of finished goods, and the finished goods themselves) and outputs (traditional 

wastes and other outputs, such as greenhouse gases, fertilizers, and product degradation), 

recognizing some goods are durable and remain as “stocks” (per Matthews et al. 2000) (Cascadia 

Consulting Group & Ross & Associates 2003a). Wernick & Irwin (2005) also did not find the 

USEPA approach comprehensive enough to fit their definition of materials flows accounts, 

because it could not track individual toxic substances from cradle to grave (for instance).  

It is difficult for the USEPA model to assess food and yard waste generation on an annual basis. 

At best, it appears to be the result of “expert opinion” estimation. Food waste has been modeled 

by others: Hall et al. (2009) used Department of Agriculture data on food production and 

estimates of American metabolism rates and weight gain to estimate how much food was 



consumed and how much was sent to market without being eaten (i.e., wasted). Similarly, 

associating yard waste production to regional weather is a more objective means of varying 

waste generation rates (although changes in disposal set-outs would need to be determined). 

Beigl et al. (2008) concluded, because waste generation occurs along parallel management tracks 

that limit direct quantification, that modeling is the only effective means to effectively evaluate 

its scope, and to support rational planning. However, Beigl et al. were skeptical that the data 

needed to support input-output models exist for national level assessments. 

Data incongruities in the state assessments and regional accountings, along with the kind of 

problems found for facility accountings, show why USEPA attempted its model. The scope of 

data management by the Themelis group does not seem adequate to address the policy prisms 

affecting counting in New York and California, for instance. Estimates of waste generation in 

California increased by more than 20% from 2006 to 2008 as the researchers tried to apply 

reasonable factors to translate reported state data into values comparable to those reported by 

other states. However, as the waste managers in New York changed counting policies, waste 

generation values for New York decreased by more than 20% from 2006 to 2008 (and was down 

over 30% from the first tonnages computed by the Themelis group for 2002). The underlying 

errors and obfuscations that affect constituent facilities are opaque to the Themelis group. 

Therefore, it is clear that careful reworking of state data will not avoid some deep-seated sources 

of error. We like to think our local efforts have less error than some others, but it is clear that 

they too contain considerable uncertainties because the base reports are not reliable. 

Chowdhury (2009) proposed that local waste generation data be generated through targeted 

sampling and then aggregated by authorities to the national level. Generation factors, as 



discussed above, could be created so that they address variations caused by local conditions. The 

periodic refinement of waste generation coefficients addresses the problem identified by McBean 

& Fortin (1993) that generation factors change with economic and demographic conditions. 

However, aggregation schemes, such as for Long Island, or even for the Themelis group, dealing 

with only 50 states, have not resulted in universal participation, suggesting widespread 

participation in creating such data may be difficult to ensure.  

Beyond Waste (in Washington) (Cascadia Consulting & Ross & Associates 2003b) described 

four potential data collection means: mandatory reporting, voluntary reporting, direct 

monitoring, and extrapolation and estimation. Reporting reflects unintentional and willful errors; 

direct monitoring requires a large effort investment; and sampling, as Dangi et al. (2008) 

describe, has statistical pitfalls although the resulting errors can be reduced by increasing 

sampling effort or using more sophisticated sampling designs. Extrapolation and estimation 

depend on the validity of the estimators. One seemingly unavoidable data issue that is rarely 

discussed in MSW management is the presentation of data with improbable numbers of 

significant figures. For instance, in the BioCycle reports, 9 and 10 digit numbers with no 

rounding are presented as if all the values were significant (e.g., van Haaren et al. 2010), a result 

of adding together smaller values to generate a large sum (although many of the smaller values 

also have improbably large numbers of seemingly significant values). It is difficult to avoid this 

particular reporting trap. 

Waste assessments are often used to assess environmental impacts. Thorneloe et al. (2002) 

created an early model of greenhouse gas emissions, for instance, and based the model on 

USEPA quantities and composition data. Since then, USEPA has created a more generic solid 



waste management greenhouse gas generation model (WARM) (USEPA 2006). The model is 

often used to estimate impacts for planning purposes (see NYSDEC 2010, for instance). WARM 

does not specify waste generation rates, but its inputs were determined, to some degree, based on 

considerations of the national waste stream. If USEPA data underlying the model are not sound, 

confidence in the model necessarily wanes. Also, if it is realized the one model from a source has 

tremendous flaws, then other efforts by the same group may also be perceived negatively, ipso 

facto. 

Mostly, US national data, especially those from USEPA (which carry the imprimatur of the 

government) are used to set local values in context. Is our program as good-better-worse than the 

nation as a whole? Are Americans better/worse than others at waste generation, recycling, and 

management? Kinnaman (2009), in an assessment of economic factors affecting waste 

management, asserted that although such evaluations had long been limited by poor data sets, 

“the past decade has seen the emergence of high quality state-wide panel data in the United 

States.” The availability of “high quality” data of any form in the US, at any level, is difficult to 

support.  

Conclusions 

It is unlikely the USEPA model accurately defines US MSW generation. Criticisms of the 

materials flow portion of the model, while they can be fairly described as nit-picking at specific 

elements of the model, highlight the difficulty of determining how long durable goods actually 

remain as stock between production and disposal. Too few details are provided for the estimation 

of food and yard wastes, and there seems to be little objective data to support the annual changes 

in generation rates for those materials. The distribution of wastes among recycling, incineration, 



and disposal seems poorly founded. In recycling, for instance, metals that are delivered for 

remanufacture do not necessarily originate as MSW. It seems likely that scrap dealers generate 

most of their materials from non-MSW sources, such as automobiles and C&D. Composting 

estimates are likely inaccurate, no matter what means is used to develop data, if our experiences 

on Long Island are applicable more broadly. Finally, the estimate of landfilling depends on the 

estimates for recycling. In addition, all data we have seen from state assessments, and nearly all 

assessments of local waste generation, find much higher waste generation than the model does. 

To be certain, all of these site specific assessments have many uncertainties associated with 

them, as well. However, it is disconcerting if there is essentially no agreement between them and 

the modeling data. USEPA says that the model is verified based on field surveys, but does not 

detail how this is done, or what constitutes verification. It is also disconcerting that every new 

report brings entirely new revised sets of US waste generation rates for previous years, based on 

that year’s model refinements. On the other hand, as iterated results of a model, that approach is 

entirely appropriate. It’s just bad form when creating national data bases. 

The Themelis group-BioCycle reports are clearly flawed, as well. Incomplete responses mean 

that inconsistent data collection methodologies are used for each report. It is difficult to tell 

whether variations in the US waste total result from changes in waste generation, or in data 

collection methodologies. It is near-impossible to verify the raw data used as input into the 

analyses, and the Themelis group is not entirely transparent in discussing how state data is 

translated into USEPA-congruent data. It is clear that the differing approaches to data collection 

by the states also create uncertainty that the same waste stream types are being counted, and that 

extra elements have not been added, or certain things left out, despite the efforts of the analysts 

to manage the data sets. Errors and policy decisions that affect the state data compilations are 



troubling, as well. We also have showed that the reporting that the state compilations use is 

likely not accurate, sometimes unintentionally but also purposefully so. 

The Themelis group approach has the virtue of being grounded in actual waste management 

practices. We think that the primary error in these assessments comes from editing actual 

activities because they do not fit a particular rubric. Residential garbage often contains wastes 

that, technically, are C&D – these wastes result from building renovation or repairs, and 

physically are indistinguishable from wastes generated at construction sites, although they are 

generated in smaller quantities. It is impractical to exclude these wastes from tonnage 

compilations. Carrying this conceptual understanding forward leads to a possibility of counting 

the solid wastes that are managed by certain kinds of facilities – landfills, recycling centers, 

transfer stations, compost sites, scrap metal dealers – and judiciously seeking to add materials 

that passed through residences, institutions and businesses but were not managed in the identified 

facilities. The data from site to site, and perhaps place to place, would not be congruent. Perhaps 

inventive data management approaches could address if not wholly resolve these kinds of 

“apples and oranges” issues. 

It is impossible to say which of the two major assessments counts MSW better. We think that 

neither does a particularly good job on their own self-described tasks. It is difficult to even put 

error bounds on the results. Some of the facility scale results can be bounded – our tare weight 

error varied from nearly 0 to 3%, for instance. Others, such as the amount of wastes hidden for 

economic reasons, cannot be so simply defined. That does not mean it is not practical to count 

MSW “good enough.” Clearly, counting waste well is important to size facilities correctly. 

However, there are few modern examples of bad errors in facility sizing. Partly this is 



engineering: facilities may be built to a site specification (compost sites or buildings such as 

transfer stations that are subject to zoning restrictions), or can be sized to accommodate 

maximum expected waste flows (transfer stations, landfills) (although most of these facilities are 

designed to fit an expected market). Waste processors (recycling centers, waste-to-energy plants 

of various kinds) need to be more carefully sized, but are often designed to have means of 

addressing sizing errors (large waste pits for incinerators, or tipping floors designed to hold 

weekly amounts of wastes for recycling facilities). Few facilities are constructed on the basis of a 

reported waste stream size; rather, often much effort is expended to independently estimate likely 

waste flows, or, better, contracts are crafted to ensure deliveries (or payment in lieu of waste 

deliveries). 

Accurate waste accounting is also useful to create meaningful assessments of programs. Program 

attributes such as recycling rates and GHG release rates, which can be easily understood by the 

general public, depend upon accuracy in assessing overall waste generation. More esoteric 

evaluations, such as life-cycle assessments, also need good inputs in order to have much validity. 

This need for accuracy to support assessment processes holds for local, regional, state, and 

federal assessments. Whether all of these assessments need to be consistent is not entirely clear. 

Data standardization is a common response to our embarrassment that we don’t count wastes 

well (Vasuki 1998, California Integrated Waste Management Board 2001,Cascadia Consulting & 

Ross & Associates 2003b,Goldstein 2007, Kaufman & Themelis 2009, Dahlen et al. 2009, 

NYSDEC 2010), although the European Union seems almost sanguine that various member 

states do not count MSW entirely congruently (Eurostat 2010). Standardizing waste accountings 

either means idiosyncratic waste streams (and there are many) will not comply – or will be force-



fitted to comply. If waste management practices are standardized to fit waste counting needs, the 

uncountable wastes may lack management options. In addition, setting standards does not 

address some underlying errors that arise at the facility level. 

Sophistication in data collection could address some problems. Technology fixes, such as GIS-

linked databases to more carefully track waste flows (electronic versions of hazardous wastes 

manifests) seem promising, but may have sociological issues. Regulation in the US, especially 

associated with greater oversight, is often perceived as government intrusion into private matters. 

Garbage is commerce, and finances are sensitive subjects; overt and active tracking of wastes 

may not be well-received. 

Regulators and the regulated community should understand that accurately reporting waste 

management is a virtue; we would have all wastes be counted, and let clever accountants parse 

the reports into appropriate boxes. However, Thompson (1998) notes that if it is impossible to 

keep good accountings of valuable things (such as money), it is not surprising we do not track 

well something like MSW that has no positive value (until processing enables recovery of 

recyclables or energy). This facetious statement has a hard kernel of truth; there is an element to 

the inability to count waste well that springs from a perception that counting waste often doesn’t 

really matter much. Especially as most programs operate to meet local needs, the actual 

operation of waste systems does not require accurate descriptions of overall US waste 

generation. Waste generation and management are significant in many ways – but counting 

MSW accurately for the US as a whole doesn’t resolve any serious problems. There are 

substantial issues with how waste generation is assessed for the nation as a whole, but alleviating 

those concerns could have consequential effects that impact actual waste operations. 
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Table 1. Comparison of USEPA and BioCycle Report Scopes 

 USEPA BioCycle 

Primary Source Model State reports 

Frequency Annual Biennial 

Authors USEPA staff Columbia University researchers 

US total generation totals and rates Yes Yes 

State-regional generation totals No Yes 

National management mode statistics Yes Yes 

State-regional management mode statistics No Yes 

National waste characterization Yes No 

Waste characterization by management mode Yes No 

 



Table 2. State-level waste assessment methodologies 

 

 Nevada Oregon California New York 

Basis Compiled forms Compiled forms, 

additional 

research 

Compiled 

forms 

Compiled forms, 

additional research 

Methodology 

consistent 

Yes Yes Since 2001 No 

Reporting mandatory Yes No Yes Yes (not enforced) 

Frequency Collected 

annually, 

published 

biannually 

Annual Annual Collected 

annually, no 

longer published 

Local disposal-

recycling reported 

Yes Yes Yes Yes 

Export-import 

accounted for 

Yes Yes Yes Yes 

Other recycling-

recovery credits 

counted 

No Yes Yes Sometimes 

Total waste 

generation based on 

Yes Mostly No, model Yes 



scale data 

Used for regulatory 

purposes 

No No Yes No 

 



Table 3. 1997 New York State Waste Management Reporting (millions of tons) 

 

Source Landfilling Incineration Export Recycling Total Recycling 

Percent 

Legislature 9.1 3.7 3.7 5.2 21.6 24% 

NYSDEC 9.3 3.3 4.5 7.4 24.5 30% 

 



Table 4. Factors affecting accuracy of reported MSW management, Regional and Facility reports 

Regional Reports Facility Reports 

Misallocation of materials as MSW (includes 

inappropriate recycling credits) 

Misallocation of materials as other than MSW 

(primarily disposal) 

Conversion of volume data to mass data 

Imports and exports 

Non-reporting facilities/processes 

Double-counting 

Determining composting credits 

Demographic issues (for rates) 

Misallocation of materials as MSW (includes 

inappropriate recycling credits) 

Misallocation of materials as other than MSW 

(primarily disposal) 

Conversion of volume data to mass data 

Determining composting credits 

Tax evasion 

Underreporting wastes 

Overreporting wastes 

Economic incentives that encourage 

“cheating” 

Use of tare weights 

Double-counting, misappropriation of credits 

Bookkeeping transfers for regulatory 

compliance purposes 



Table 5. Town of Brookhaven scale discrepancies (thousands of tons) 

 

 Inbound Outbound Difference 

(% of inbound tonnage) 

2002 216 212 2.0% 

2003 228 223 2.0% 

2004 233 228 2.1% 

2005 230 227 1.4% 

2006 228 226 1.0% 

2007 219 216 1.3% 

2008 218 211 3.0% 

2009 212 211 0.6% 

2010 201 199 1.4% 

 



Table 6. Comparison of USEPA (2009) and BioCycle (van Haaren et al. 2010) 2008 data (in 

million tons) (with data sources) 

 USEPA BioCycle 

Recycling (including 

composting) 

82.9 

(primarily end users survey) 

93.8 

(sum of compiled 

state data) 

Composting 22.1 

(report in 2008 Biocycle) 

24.5 

(sum of compiled 

State data 

WTE Incineration 31.6 

(regulator reports) 

25.9 

(sum of compiled 

State data) 

Number of WTE Incineration 

facilities 

87 

(industry report) 

113 or 115 

(sum of compiled 

State data) 

Landfilling 135.2 

Modeled tons – Recycled tons - WTE 

incineration tons 

269.8 

(sum of compiled 

State data) 

Number of Landfills 1,812 1,908 



(Arasova et al. 2008) (sum of compiled 

State data) 

 



Table 7. Indicators used in Beyond Waste (Washington State) 

(http://www.ecy.wa.gov/beyondwaste/bwprog_sixteen.html) 

Indicator Unit Used 

Consumer Climate Change 

Index 

Index (2000 = 100) (modeled GHG emissions, based on consumer 

spending) 

Consumer Ecosystem 

Toxicity 

Index (2000 = 100) (modeled toxicity of releases, based on 

consumer spending) 

Economic Value of 

Recyclables Disposed 

Dollars (estimated disposal rates) 

Electronics Recycling Percent (from estimates of use and disposal) 

Green Building Percent (market share of new commercial and residential 

construction) 

Hazardous Waste per 

Dollar State GDP 

Pounds/Dollar (reported data from State manufacturers) 

Hazardous Waste 

Generation 

Pounds (reported data, organizations generating more than 2,640 

lbs/yr) 

Hazardous Waste 

Recycling 

Pounds (recovery of wastes, excluding closed loop systems, for 

organizations generating more than 2,640 lbs/yr) 

Lawn and Garden 

Pesticides Toxicity 

Index (2000 = 100) (modeled toxicity of releases, based on 

consumer spending) 

Mercury in Biosolids Concentration (ppm) (samples from 6 facilities) 

Organic Materials 

Recycling 

Tons (tracked composting, recycling, and diversion of materials 

such as yard wastes, food wastes, and biosolids) 

Paint Recycling Percent (estimate based on HHW program reports) 

 

 

http://www.ecy.wa.gov/beyondwaste/bwprog_sixteen.html


Figure Captions: 

Figure 1. Differences between USEPA and BioCycle total US waste stream sizes (USEPA data 

assembled from various reports) 



Fig. 1.  
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