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ABSTRACT 47 

 48 

Methane (CH4) is now considered a bridge fuel between present fossil (carbon) economy and 49 

desired renewables and this energy molecule is projected to play an important role in the global 50 

energy mix well beyond 2035. The atmospheric warming potential of CH4 is 28-36 times, when 51 

averaged over a 100-year period, that of carbon dioxide (CO2) and this necessitates a close 52 

scrutiny of global CH4 emissions inventory. As the second most abundant greenhouse gas 53 

(GHG), the annual global CH4 emissions were 645 million metric tons (MMT), accounting for 54 

14.3% of the global anthropogenic GHG emissions. Of this, five key anthropogenic sources: 55 

agriculture, coal, landfills, oil & gas operations and wastewater together emitted 68% of all CH4 56 

emissions. Landfills are ranked as the third highest anthropogenic CH4 emission source, behind 57 

agriculture and coal mines, and emissions from the waste sector are expected to reach almost 800 58 

million metric tons CO2equivalent(MMTCO2e) in 2015. 59 

The two largest economies spewed out 42% (14% (U.S.) and 28% (China)) of the world’s 60 

total greenhouse gas (GHG) emissions; these two countries are also the largest producers of 61 

municipal solid waste (MSW). The United States averages 250 MMT of MSW annually, of 62 

which about 63% enters landfills. In 2015, there were 2434 landfills in the United States and CH4 63 

from these landfills accounted for 138 MMTCO2e released into the atmosphere and represents 64 

17.7% of all U.S. CH4 emissions. China had 580 landfills and treated 105MMT of MSW in 2013. 65 

Methane produced from landfills contributes about 13% of total CH4 emissions in China. Almost 66 

50% of landfills in China did not install efficient LFG collection and reuse system to make them 67 

manageable so a great deal of CH4 and CO2 GHGs are emitted without intervention. Recent data 68 

show that globally, 45 bcm of CH4 or 282 million barrels of oil equivalent (boe) was annually 69 

released from landfills into the atmosphere. Managing methane emission from landfills is a 70 

global challenge, though China lags behind in managed landfills that contribute to adverse health 71 

effects on the population. Moreover, the rich organic content of MSW in China indicates that 72 

CH4 emissions there may be underestimated. The China unmanaged landfill scenario is further 73 

duplicated in developing as well as in least-developed countries.  74 

 This review starts with a dialog on CH4 emissions and climate change and the chemical 75 

changes the CH4 molecule undergoes in the atmosphere (Section 1). Section 2 deals with 76 

identification of global CH4 emissions from key sources, particularly anthropogenic, among 77 
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those are agriculture, coal mines, landfills, oil & gas operations and wastewater. Though each of 78 

these sources is descriptive on their own, the focus of Section 3 is on landfills with particular 79 

emphasis on the United States and China, two largest producers of waste. The quantitative 80 

measurement of CH4 emissions is still uncertain so Section 4 is devoted to various CH4 81 

estimation models, such as United States Environmental Protection Agency (US EPA) 82 

LandGEM, the United Nations Intergovernmental Panel on Climate Change (IPCC) and others 83 

that are under development. The key landfill emissions data bases and the collection 84 

methodologies such as those used in the United States and recently released by the Chinese 85 

government are highlighted. Section 5 describes chemistry of pathways that produce CH4 from 86 

various sources. Section 6 reviews potential of CH4 as an energy source for combined heat and 87 

power (CHP) production as well as and pathways for conversion of CH4 into renewable gaseous 88 

fuel for use as compressed natural gas (CNG) and clean liquids that could be used as either drop-89 

in replacement (gasoline, diesel, jet fuel hydrocarbons) or advanced oxygenated fuels such as 90 

methanol, a versatile precursor to fuels and chemicals, and dimethylether (DME), a clean diesel 91 

substitute. Section 7 describes in-place government policies to deal with CH4 emissions from 92 

specific sectors. These policies vary from country to country but the Unites States and the 93 

European Union (EU) countries are well ahead in curbing methane emissions while China is now 94 

playing close attention to its increasing global share of emissions. The last section (Section 8) 95 

identifies science and technology and needed policy challenges to manage fugitive methane; this 96 

includes identification of technological intervention that China and other countries would need to 97 

capitalize on this wasted resource by efficiently harvesting this energy source, needed 98 

government policies and science and technology issues that researchers have to deal with to help 99 

combat climate change. The overall review provides a comprehensive description that could lead 100 

a coherent picture to harvest global CH4 emissions for useful energy, a sensible solution. 101 

Last year marked a milestone in the U.S.-China relations when the White House announced 102 

that the United States intends to achieve an economy-wide target of reducing its emissions by 103 

26%-28% below its 2005 level in 2025 while China intends to achieve the peaking of CO2 104 

emissions around 2030 and intends to increase the share of non-fossil fuels in primary energy 105 

consumption to around 20% by 2030. In another 2014 initiative, the United States also identified 106 

fugitive methane from oil and gas operations, agriculture, and landfills to maintain respective 107 

post-2020 actions on climate change, recognizing that these actions are part of the longer term 108 
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efforts to transition to low-carbon economies, mindful of containing the global temperature 109 

increase goal of 2℃, also known as two-degree scenario (2DS). These commitments by the 110 

United States and China were evident in the successful agreement at the culmination of the 111 

recently concluded COP21 event in Paris. This review is written to start a dialog among 112 

researchers that tetrahedral CH4, the simplest among all organic compounds, plays such a 113 

complex role in climate change that as its use increases, it will rival carbon dioxide (CO2) in 114 

GHG effect in the coming decades if no attempt is made to contain its emissions.      115 

 116 
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1. Global methane emissions  201 

Methane (CH4) is the most common organic compound in the atmosphere [1] and its 202 

2013 globally averaged atmospheric concentration was 1824 parts per billion by volume (ppbv), 203 

a value that has been increasing about 0.5% per year over the past 30 years (Fig. 1) [2]. Current 204 

estimates, which tend to converge, are the product of four independent research communities [3], 205 

using flask grab samples analyzed by gas chromatography with flame ionization with a precision 206 

of ± 2ppb. Atmospheric concentrations in the Pleistocene Epoch have varied from 350 ppbv for 207 

glaciated periods to 700 ppbv for more ice-free periods, according to polar cap ice core sample 208 

analyses [4]. These modern values are considerably less than the estimated 1-10 parts per million 209 

by volume (ppmv) concentrations in the abiotic Hadean Eon and 100-1000 ppmv in the anoxic 210 

Archean Eon [5], although maximum concentrations then may have been 3500 ppmv [6]. 211 

Following the onset of photosynthesis but before complete oxygenation of the atmosphere, 212 

concentrations probably were reduced to 100-300 ppmv [7]. Oxygenation of the atmosphere 213 

caused order of magnitudes reductions in CH4 concentrations. The maximum estimated 214 

concentration of 750 ppbv for the pre-Industrial Revolution Pleistocene is elevated a little 215 

compared to interglacial averages, probably because of anthropogenic land use changes over the 216 

past 10,000 yrs [8] [9]. Methane concentrations over the past 250 years have increased by 217 

approximately 250%, increasing more than carbon dioxide (CO2) concentrations (which doubled 218 

over the same period) (Fig. 2) [4] [1] [10]. 219 

  220 
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 221 

 222 

 223 

Fig 1. Recent trends in globally-averaged atmospheric methane concentrations (adapted from ref. 224 

2) 225 

 226 

 227 

 228 

Figure 2. Atmospheric methane concentrations over the past 250 years (data from ref. 11) 229 
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Atmospheric CH4 decays to CO2 and water (H2O), primarily due to reactions initiated by 231 

the hydroxyl radical (OH∙) [10], especially under strong sunlight in the tropics [4]. The reaction 232 

pathway (Fig. 3) is not simple and involves several feedbacks, and some soluble intermediate 233 

compounds can be removed by precipitation. The most important feedback is linked to the OH∙ 234 

reaction pathway (Fig. 4); atmospheric CH4 tends to consume OH∙ but the linkages between 235 

compounds that create OH∙ and the CH4 cycle mean it is not always the case that the destruction 236 

of CH4 requires consumption of OH∙ [12]. Still, one reaction pathway for CH4 with OH∙ results 237 

in CO; this produced CO is then oxidized by more OH∙, so one molecule of CH4 results in the 238 

consumption of two molecules of OH∙. Therefore, as CH4 concentrations increase, there are 239 

somewhat fewer OH∙ to react with, thus slowing the destruction of CH4 – a positive feedback 240 

where more CH4 results in a longer CH4 atmospheric lifespan. In this way, CH4 plays an 241 

important role in determining the overall oxidizing capacity of the atmosphere and its ability to 242 

remove many pollutants, as OH· is involved in many reactions that determine the fate of 243 

common air pollutants [1].  244 

  245 
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 246 

 247 

Figure 3. Atmospheric decay pathway for methane (adapted from ref. 12) 248 
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 253 

Figure 4: Atmospheric decay pathway for the hydroxyl ion (adapted from ref. 12) 254 
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On average, molecules of CH4 have an eight to nine yr atmospheric life span [13] [4] 256 

(given as 9.1 yrs in [10]), calculated as the atmospheric content divided by the removal rate. 257 

However, because of feedbacks that slow its removal, the lifespan of CH4 is often given as its 258 

perturbation lifetime. Values for the perturbation lifespan are usually in the range of 12 yrs [12], 259 

with IPCC [10] using 12.4 ± 1.4 yrs, but may be as much as 14.4 yrs [14]. The OH· is the 260 

primary means of removing CH4 from the atmosphere [10]; one general estimate found the OH∙ 261 

decay process accounts for 90% of CH4 removals; soil oxidation by bacteria removes 4% more, 262 

stratospheric reactions with chlorine and oxygen radicals remove 3% more, and chlorine radicals 263 

present at the sea-air interface remove the remaining 3% [3]. Because OH∙ reactions dominate, 264 

small changes in its concentration can cause variability in atmospheric CH4 concentrations [4]. 265 

Nonetheless, interannual and interdecadal variability of CH4, while poorly constrained, is 266 

surmised to be due to changes in wetlands releases [15], and probably driven by precipitation 267 

differences [3]. Higher concentrations of CH4 have been measured in the northern hemisphere 268 

compared to the southern hemisphere over the past 1000 years, with the difference increasing 269 

from 30-60 ppbv to 150 ppbv in the twentieth century [1]. Seasonal variability at particular 270 

measurement sites appears to be driven by changes in tropical wetlands releases as mediated by 271 

differences in global dispersion of the released gas [13]. Methane greenhouse gas (GHG) effects 272 

are spatially differentiable from those from CO2, and so these two gases need to be separately 273 

determined in order to model GHG effects [1]. 274 

Methane is a potent GHG; long-wave heat radiation (infra red light) from the earth’s 275 

surface is absorbed by the vibrations of the carbon-hydrogen bonds of CH4 at wavelengths 276 

clustered at 7-13 µm (wave numbers of 1200-1400 cm-1), with the most important feature at 7.66 277 

µm (1306 cm-1), preventing radiation from escaping to space and thereby maintaining the earth’s 278 

surface at temperatures above its “black box” values [16] [1]. Methane increases cause 279 

increasing GHG effects with the square root of concentration due to partial saturation [1], 280 

although since the wavelengths at which CH4 absorbs radiation are not entirely saturated each 281 

additional molecule of CH4 adds to the GHG effect [17]. Changes in CH4 concentrations 282 

correlate well with changes in temperature over the past 500,000 years. It is not clear if 283 

temperature changes cause CH4 concentration changes, or if changes in CH4 concentrations 284 

cause temperatures to change, as the resolution of the signals is not temporally sharp enough to 285 

discriminate [1]. 286 
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The strength of GHGs is conventionally compared to CO2; this is because recent 287 

increases of the atmosphere’s greenhouse effect are primarily due to increasing CO2 288 

concentrations. Because the lifespan for CH4 is much less than that of CO2 (CO2 is relatively 289 

inert, and is removed from the atmosphere by coming into equilibrium with the ocean, a process 290 

that requires ~1000 years to complete due to slow deep water turnover) [18], the CO2-relative 291 

GHG impact of CH4 (sometimes called global warming potential, "GWP") varies depending on 292 

the time horizon that is considered (Table 1). The 100-year horizon is the most commonly 293 

considered value. However, although the conversion of CH4 to CO2 is already accounted for in 294 

the GWPs, indirect effects associated with its atmospheric decay cycle can double impacts listed 295 

in Table 1 [1]. IPCC [10] distinguishes between fossil CH4 and general CH4 emissions, as fossil 296 

CH4 emissions contribute net "additional" CO2 to the atmosphere on decay. The sum of CH4 297 

emissions accounts for ~20% of current GHG radiative forcing; CO2 creates about 70% of the 298 

forcing, and other gases account for the difference [10]. 299 

  300 



14 

Table 1. Global warming potential for methane relative to carbon dioxide 301 

 
Forcing (W m-2)  Time Horizon 

20 yrs 100 yrs 500 yrs 

[19] direct effects  

(indirect effects) 

 
 

15  

(30) 

 

[14] 0.65    

[1] 0.47-0.55 62±20 24±7.5 7.5±2.5 

[20]  105 33  

[12]  62 24 7 

[21]    25  

[22]   21  

[23]   21  

[24]   21  

[25]   25  

[26]   21  

[27]   25  

[28]  62  8 

[29]   21  

[30]   23  

[10] (for 2005) 0.47    

[31]   25  

[10] 0.48±0.05 84 28  

[10] "fossil methane"  85 30  

[10] with feedbacks  86 34  

 302 

  303 
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Many assessments of non-CO2 GHGs express the amounts of these GHGs as CO2-304 

equivalents (CO2e) because such units allow for more direct comparisons of the potential effects 305 

associated with the compounds. However, conversion of release amounts or atmospheric 306 

concentrations requires adopting a particular time frame and GWP value. As Table 1 shows, the 307 

standard (IPCC) values have drifted upwards over several decades for CH4, and some researchers 308 

prefer different values and time scales as appropriate measures of relative impacts. This suggests 309 

that older CO2e values require adjustment to be considered alongside more recent evaluations; it 310 

also implies use of CO2e units requires explicit identification of the time scale and conversion 311 

factor being used. Note that for CH4 especially, indirect effects are usually not included in the 312 

valuation factors. Indirect effects include that oxidation of CH4 causes increases in water vapor, 313 

and its oxidative consumption of OH∙ results in other GHG gases not being oxidized in their turn 314 

[1].  315 

Based on a “steady-state” atmospheric concentration of 700 ppbv and a similar-to-present 316 

lifespan of CH4 of ~9 yrs, pre-Industrial Age emissions to the atmosphere were estimated to be 317 

on the order of 215 Tg yr-1 [4]. Most current emission estimates range from a little less than 500 318 

Tg yr-1 to just more than 600 Tg yr-1 (Table 2). Some estimate the values to be higher – for 319 

instance, Kirschke et al. [3] set their bottom up generation value at 678 Tg yr-1. Models of 320 

monitored air concentrations (“inverted” source determinations) sometimes find large 321 

discrepancies from government organization-reported values [32], although Kirschke et al. [3] 322 

presented arguments that summed bottom-up values resulted in overestimates. To account for 323 

increasing atmospheric concentrations, consumption of CH4 must be about 0.5% less than the 324 

generation estimates. Note that IPCC in its most recent assessment [10] has adopted values and 325 

assessment techniques from Kirschke et al. [3]. 326 

 327 

  328 
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Table 2. Estimates of methane generation and consumption rates 329 

Source Methane Generation Rate (Tg yr-1) Methane Consumption Rate (Tg yr-1) 

[13] 545±20  

[15] 525 506 

[10] top-down 553 

(526-569) 

550 

(514-560) 

[10] bottom-up 678 

(542-852) 

632 

(592-785) 

[3] literature values  

(bottom up) 

526-569 514-560 

[3] literature values  

(top down) 

542-852 592-785 

[3] bottom up 

estimate 

678 632 

NATO-IRW [33] 510  

[1] range  

(best estimate) 

410-660  

(503) 

430-660  

(515) 

[12] 598 576 

 330 

  331 
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Most global estimates of CH4 generation are “bottom up”: they are based on summing 332 

individual source category estimates. Uncertainties arise due to variability across space and time 333 

for point-source source estimates, which then need to be applied across many source areas, 334 

which also may not be well-defined [1]. Consumption is even more difficult to determine, as 335 

measurements of OH∙ concentrations are not accurate nor well distributed. Most estimates of 336 

consumption use various atmospheric chemistry models. It is also possible to determine CH4 337 

concentrations from a “top-down” modeling approach, using the model outputs to assess 338 

variability in monitoring station data, and then fitting presumptive sources to those outputs [3].  339 

Methane emissions are usually classified into source categories. One way is to classify 340 

CH4 into biogenic (from microbial processes), thermogenic (from geologic sources), and 341 

pyrogenic (from incomplete combustion) classes, because each of these has a different stable 342 

carbon (δC13) isotopic signature [3] (Table 3). This can enable verification of estimates based on 343 

source categories, by comparing measured isotopic values for atmospheric CH4 to modeled 344 

values based on source signatures [3] [4]. However, most broad assessments of CH4 generation 345 

commonly parse the releases into different groupings, mostly based on whether the emissions are 346 

anthropogenic (agriculture, waste management, land use, fossil fuel industry) or naturally caused 347 

(wetlands, termites, seeps) [10] [27]. Our sources assessment (see below) follows this 348 

convention, as it is most amenable to identification of potential mitigation of fugitive releases 349 

 350 

  351 
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Table 3. Isotopic signatures of methane by source [3] 352 

Category Source Exemplars δ13C 

(‰) 

Biogenic 

 

Wetlands, rice paddies, dam impoundment sediments, termite and 

ruminant digestive systems, manure, landfills, sewage treatment 

systems 

-55 - -70 

Thermogenic Fossil fuels: marine and terrestrial seeps, mud volcanoes, oil and 

gas extraction well leaks, pipeline leaks, coal gas 

-25 - -55 

Pyrogenic Fossil fuels, wildfires, biofuels  -13 - -25 

 353 

  354 
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Methane is produced biologically by single-celled organisms in Archaea, where CH4 is a 355 

waste byproduct from metabolic consumption. There are three distinct redox reactions. For the 356 

simplest, CO2 is reduced and hydrogen gas (H2) oxidized; energy is produced, water is created, 357 

and CH4 released as a waste gas. The reactions are catalyzed by nickel compounds and are 358 

dependent on intracellular thiol cofactors [34] [35]. In detail, complicated organic molecules 359 

need to be simplified before they can be metabolized by methanogens. This is usually 360 

conceptualized as a three-step process. First, organisms use hydrolysis to convert carbohydrates 361 

to simple sugars, proteins to peptides and amino acids, and lipids to long-chain fatty acids. Next, 362 

other organisms ferment these products either through acidogenesis to volatile fatty acids, 363 

alcohols, ammonia, CO2 and H2, or through acetogenesis to acetate. The presence of 364 

methanogens often suppresses concentrations of H2 and formate so that other degradative 365 

pathways that are more energetically favorable are not followed. The class of methanogenic 366 

organisms then follows three distinct pathways to produce CH4. Reductive methanogens convert 367 

CO2 and H2 to CH4 and water. The methyl groups in organic compounds associated with 368 

acidogenesis pathways are coupled to coenzyme M and then demethylated, producing CH4 and 369 

water with H2, as was the case for the reduction of CO2. Only a few genera of aceticlastic 370 

methanogens convert acetate to CO2 and CH4 [36]. Methanogens tend to be poisoned by O2 or by 371 

reaction products of O2, and so are considered to be strict anaerobes. Microenvironments may 372 

exist in otherwise oxygenated settings to allow production of CH4 [36]; the mechanisms that 373 

allow for oxidative production of CH4 from terrestrial plants is not known [37]. Methanogens are 374 

found in a variety of anaerobic environments: waste facilities such as landfills and sewage 375 

treatment plants, the guts of certain primary consumers (notably termites and cattle), rice 376 

paddies, and natural wetlands [10]. 377 

Because intermediate reactions catalyzed by other classes of organisms are necessary for 378 

methanogens to use most organic compounds, it is not likely they were among the first 379 

organisms on early Earth, and they produce less energy per mole of carbon than any other strand 380 

of Archaea, so that they are outcompeted when other electron donors are not limited [36]. 381 

Nonetheless, by the mid-Archean they are likely to have been important in maintaining the early 382 

atmosphere, partly because atmospheric residence of CH4 would have been closer to 1000 yrs 383 

absent oxidizing agents and would have been key in keeping the early Earth ice-free [5]. Based 384 

on isotopic data, it seems likely that “recent” differences in glaciated and warm-period CH4 385 
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concentrations in the Pleistocene are due to greater wetlands production of CH4 by bacteria when 386 

glaciers are less extensive [4]. Generally, warmer temperatures in the late Cenozoic Era are 387 

related to higher CH4 concentrations [38] [39] [40], and positive excursions in CO2 388 

concentrations at other times in this era also seem likely to have been caused at least partly by 389 

increased CH4 generation, although the source of the CH4 may have been geologic rather than 390 

biotic [41].  391 

Wetlands release between 60% [4] and 70% [1] of non-anthropogenic CH4. Variations in 392 

Cenozoic and early Holocene CH4 concentrations have been linked to wetlands expansion and 393 

contraction [1], and even much of changing concentrations over the past several millennia appear 394 

to be linked to changes in wetland area although anthropogenic effects on atmospheric 395 

concentrations are detectable [9]. Tundra and higher altitude bogs emit one-third of wetland CH4 396 

[4], but tropical South America and Africa are the greatest sources, with large emissions also 397 

coming from southeast Asia and temperate South America [3]. This creates latitudinal and 398 

seasonal signals in emissions [42] [3]. The saturated soils of wetlands, which typically have high 399 

carbon loading and slow water circulation, tend to be anoxic. This supports anaerobic decay of 400 

organic matter. Where redox conditions allow, methanogenesis occurs. The wetland water 401 

interface may be a region of intense CH4 oxidation, but often more CH4 is produced than can be 402 

consumed. Modern agriculture is usually assessed as being the greatest single source of CH4 403 

[42], but wetlands are the second largest single source. Changes in rainfall in tropical South 404 

America and/or Africa has consequential impacts on wetland release rates, and therefore these 405 

climatic conditions dominate interannual variability in atmospheric CH4 concentrations [3] [10]. 406 

In the mid-2000s there was flurry of excitement regarding an unexpected source term for 407 

CH4. Frankenberg et al. [43] identified high emission levels from tropical forests through space-408 

based observations. The amounts (30 Tg yr-1) were within model budget uncertainties (50-100 409 

Tg yr-1). Incubation experiments in the field and laboratory suggested that some unidentified 410 

methanogenetic process in forests could cause CH4 releases from live plants as well as fallen 411 

litter. Field experiments were partly confounded by the unavoidable presence of atmospheric 412 

CH4, but laboratory work in CH4-free settings suggested aerobic methanogenesis was occurring, 413 

and because of the depleted δC13 signatures of the resulting gases, pectin was probably the plant 414 

material being consumed. Global emissions were estimated to be 62 to 236 Tg yr-1, with 415 

approximately 10% from litter and the remainder coming from living tissues [44]. The deviation 416 
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in δC13 values was seen as validating excursions measured in ice cores in pre-Industrial times 417 

[45]. The large potential output was quickly reduced: to less than 125 Tg yr-1 through three 418 

independent CH4 budget modeling exercises [46], to 20-69 Tg yr-1 by reconsidering assumptions 419 

made in the original global output estimate [47], and to potentially as low as 0 Tg yr-1 through 420 

reconsideration of ice core δC13 values (although uncertainties associated with biomass 421 

combustion mean that substantial emissions of more than 100 Tg yr-1 were still considered 422 

possible) [48]. Confirmatory experiments sometimes found emissions, and sometimes did not, 423 

although a consensus seems to be that woody plant pectins under UV-light could produce CH4 424 

through an undetermined mechanism [37]. Lichens and bryophytes [49] and wheat farming [50] 425 

have been found to cause some methane emissions, too, although one study suggested aerobic 426 

agricultural soils are a net sink and not a source of CH4 [51]. Recent global budgets do not 427 

include aerobic methanogenesis from terrestrial plants as a substantial source of atmospheric 428 

CH4 (see [10] and [3]) and IPCC [10] described it to be "unlikely" to be a significant contributor. 429 

Linked to this is the "ocean methane paradox," where the surface ocean is saturated with both 430 

CH4 and O2; most budgets estimate the oceanic contribution to atmospheric methane at 5-25 Tg 431 

yr-1. Research suggested that at least some of these releases were from methylphosphonate 432 

decomposition to generate phosphate (under low phosphorus conditions) in the surface ocean 433 

saturated in O2 [52]. In addition, thawing permafrost, because the carbon made available in this 434 

process is likely to be under anaerobic conditions, is expected to be a potentially large CH4 435 

source in the near future, although it is not a significant element in current CH4 budgets [53]. 436 

Submarine seeps and mud volcanoes are the largest geologic point sources of CH4 [54]. 437 

A great deal of ocean sediment-sourced CH4 is oxidized before it reaches the open ocean [55]. 438 

Some abiotic CH4 is also produced by volcanic outgassing. Spreading ridges create serpentine 439 

rocks, which tend to exclude ferrous minerals. Serpentine oxidizes to magnetite, which leads to 440 

the reduction of CO2 to CH4 [5] [56]. Other CH4 classed as abiotic production occurs with the 441 

burial of organic carbon fixed by autotrophs, which is then diagentically released as CH4 either 442 

as direct gas seeping to the atmosphere or through volcanic releases [35]. Release of CH4 from 443 

oceanic hydrates can also be perceived of as an abiotic CH4 release [41], although it is likely 444 

most CH4 in hydrates was originally produced through methanogenetic organisms. 445 

Thermogenesis typically results in much higher ethane and propane to CH4 ratios than biotic 446 

methanogenesis, and δC13 values are smaller [36]. 447 
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Fossil fuels are a source of CH4. Fossil fuels too are diagenetically altered organic carbons, 448 

present as solids (coal), liquids (petroleum), or gas (natural gas). Methane is a component in all 449 

of these carbon states, and is a byproduct release associated with the harvest, transport, and use 450 

of these resources [10] [20] [1]. Natural fossil fuel sources include diffuse but widespread 451 

microseepage from petroleum-containing sedimentary basins [54]. Incomplete combustion of 452 

wood, fossil fuels, and other carbon-containing materials is also a source of CH4 [10] [1] [3]. 453 

Release of CH4 to the atmosphere from many environments can be inhibited and greatly 454 

reduced because of methane oxidizers. This is especially true in sedimentary environments [36]. 455 

Methane oxidizing bacteria will be discussed thoroughly in Section 4. 456 

 457 

  458 
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2. Methane emissions from key anthropogenic sources 459 

This section describes CH4 emissions to the atmosphere from four key anthropogenic 460 

sources: agriculture, coal mines, gas systems (including other petroleum system sources), and 461 

wastewater management. Landfills are discussed separately and more completely in Sections 3-462 

5. These five sources are the dominant anthropogenic sources (Table 4) and so offer 463 

opportunities for control of CH4 impacts regarding climate change. Table 5 lists natural sources 464 

of methane.  465 
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Table 4. Anthropogenic sources of methane (Tg yr-1) (*/**: considered together) (1 livestock manure only) (2 includes manure) 466 

 Agriculture Biomass 

Combustion 

Coal Landfills Gas Wastewater Other Total  

(Tg yr-1)  

Percent of Total 

Emissions 

[57] 190 55 35 40 45   365 

68% 

[33] 159 50 46 22 30 25 30 360 

70% 

[28] 155 50 50 25 30 25 30 365 

70% 

[1] 141  103* 61 103*   355 

70% 

[21] 50% 4% 6% 11% 20% 9%   

[15] 121±19 50±8 47±10 55±11* 63±9 55±11*   

[10] 200 

(187-224) 

35 

(32-39) 

96* 

(85-105)* 

75**2 

(67-90)**2 

96* 

(85-105)* 

75**2 

(67-90)**2 

 331 

(304-368) 

50%-65% 

[3]  

(top-down) 

209 

(180-241)** 

30 

(24-45) 

96 

(77-123)* 

209 

(180-241)** 

96 

(77-123)* 

209 

(180-241)** 

 335 

(273-409) 

61% 

[3]  

(bottom-

up) 

200 

(187-224)** 

35 

(32-39) 

96 

(85-105)* 

200 

(187-224)** 

96 

(85-105)* 

200 

(187-224)** 

 331 

(304-368) 

49% 

[58] 167 11 37 46 101 29 18 325 

[59]     60    

[22] 140 152* 152*  152*   357.9 
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Table 5. Natural sources of methane (Tg yr-1) 467 

 Fires Seeps Termites Wetlands Other Total (Tg yr-1)  

(Percent of Total Emissions) 

[57]  5 40 115 15 175 

32% 

[33] 2  20 110 16 150 

30% 

[28]   20 110 20 150 

30% 

[1]   20 115 25 160 

30% 

[15]   23±4 147±15 19±6  

[10] 3 

(1-5) 

 

(42-64) 

11 

(2-22) 

217 

(177-284) 

 347 

(238-484) 

35%-50% 

[3]  

(top-down) 

   175  

(142-208) 

43  

(37-65) 

218  

(175-273) 

40% 

[3]  

(bottom-up) 

3  

(1-5) 

54  

(33-75) 

11  

(2-22) 

217  

(177-284) 

 347  

(238-484) 

51% 

 468 

  469 
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There is variability in the assessment of sources. Part of the differences comes from 470 

definitional issues (such as whether wildfires are considered separately from biomass 471 

combustion for energy purposes), but most of the differences come from the use of models 472 

primarily based on area emission rates. There are only a few aggregate estimations based on 473 

collecting measurements from the dispersed and numerous locations of CH4 releases, even when 474 

only one or two kinds of CH4 sources are being considered (e.g. [59]). Note that most sectoral 475 

estimates of natural CH4 generation are less than pre-anthropogenic influence budget estimates 476 

of 215 Tg yr-1, but that IPCC [10], following the lead of Kirschke et al. [3] in their bottom up 477 

estimates, sees natural sources as generating much more (75% more) CH4 than the budget model 478 

determined [4]. 479 

All but one current assessment find that most CH4 releases have anthropogenic sources, 480 

so that most find circa two-thirds of all CH4 is now released because of human activities; this 481 

ignores secondary effects associated with climate change, such as increased forest fires [60] and 482 

termite activity [61]. Although short-term variations in CH4 concentrations are most probably 483 

due to climatic effects on wetlands, the overall trend of increasing CH4 concentrations is being 484 

driven by human-caused releases to the atmosphere [10] [15] [3].  485 

IPCC [11] notes that assessments of CH4 sources are more uncertain than assessments of 486 

CO2 sources. Kirschke et al. [3] estimated that uncertainties in CH4 quantifications are being 487 

reduced, but are still substantial: 50% for wetlands and perhaps 100% for other natural sources; 488 

60% for biomass burning, and 30% for waste, fossil fuel, and agriculture anthropogenic source 489 

terms. Brandt et al. [62] estimated that emissions as estimated by the US Environmental 490 

Protection Agency (USEPA) in its inventory reports are at least 50% too low in sum, and that 491 

errors are greater for certain source categories (as surmised from isotopic analyses). In addition 492 

to scaling issues discussed above, errors accumulate because samples are not representative of 493 

sources (i.e., whether or not fracking effects are not accurately accounted for), samples are too 494 

few in number, may be biased because of selection of cooperative sites, data uncertainty is not 495 

properly accounted for, and distributions of sources are likely to have “heavy tails,” which when 496 

coupled with insufficient sampling, means large sources are not well represented in the data sets. 497 

 2.1. Agriculture 498 

Agriculture is usually assessed as the largest category of anthropogenic CH4 releases, and 499 

the single largest source of CH4 to the atmosphere. The predominant sources have long been 500 
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understood to be rice paddies and livestock (either from manure or rumen releases, or both) [63] 501 

[64] [65], and that is still the current understanding [10]. Rice cultivation is a much smaller 502 

source than livestock, with estimates for rice cultivation about 40 Tg yr-1 and ruminants 503 

approximately double [4] [10], although Bloom et al. [66] estimated rice emissions to be about 504 

66 Tg yr-1 (using a scaling for combined rice-wetlands releases), which was similar to data 505 

compiled by Wuebbles and Hayhoe [1]. USEPA [58] estimated agriculture as being 25% greater 506 

than many estimates (~160 Tg yr-1) but found rice a smaller contributor (24 Tg yr-1) and 507 

livestock thus five times greater a source than rice. Kirschke et al. [3] thought agriculture was a 508 

much greater source than others (200 Tg yr-1 by bottom-up estimates, 209 Tg yr-1 by top down 509 

estimation), about twice as much as all fossil fuel sources. World Bank [22] estimates are that 510 

agriculture is approximately the same scope as energy sources for CH4 releases; many 511 

assessments [22] [58] [10] find poorer countries (especially the poorest) have a much higher 512 

proportion of agricultural sources than wealthier countries, so that the relative proportion is 513 

likely to change with increasing global affluence and increased energy use. 514 

Agricultural lands cover approximately 50% of the global land surface, and because of 515 

population growth, agricultural effort and outputs have been increasing. Flooded tropical rice 516 

paddies create near optimal conditions for CH4 production: low redox conditions, large labile 517 

organic inputs, and elevated temperatures, all of which are found just below the water-soil 518 

interface [67]. Methane is released at specific times in the rice cultivation process, meaning it is 519 

not a constant source even when cultivated year round [66]. Flooding is the key element, as it 520 

creates the anoxic conditions necessary for methanogenesis. Plant height is also important, as the 521 

rice plant itself is the main transport means of CH4 from sediments to the atmosphere [67]. Soil 522 

water CH4 volatilizes in the root cortex, and then is transported through intercellular spaces and 523 

aerenchyma to pores in the leaves; this pathway means CH4 is not oxidized in the paddy, thus 524 

making it the primary route for CH4 releases [68]. Soil types mostly change the timing but not 525 

the amount of CH4 generation (acidic soils delay gas generation). Most other factors (such as 526 

tillage, transplanting versus seeding, and other farming practices) do not have consistent signals 527 

in CH4 generation rates [67]. Because rice began to be cultivated ~8000 years ago [69], it has 528 

played a long-term role in the increase of atmospheric CH4 concentrations [8]. Methane releases 529 

from rice paddies have decreased per tonne of rice produced, due to greater yields and more use 530 

of inorganic fertilizers [28] [70]; inorganic fertilizers may reduce CH4 releases by a third. 531 
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Draining flooded fields at some time during the year also reduces gas emissions [1]. Increasing 532 

use of composts and other humified carbon sources may be useful to maintain good soil 533 

qualities; they should produce less CH4 emissions than traditional “green” manures [67]. 534 

Methane releases from rice paddies is mostly determined by the area of rice being cultivated, 535 

rather than the intensity of use. Therefore, because of increased efficiency in rice production, the 536 

amount of CH4 associated with rice farming has not been increasing as quickly as many other 537 

anthropogenic sources [28]. A rough approximation of average rice paddy CH4 emission rates is 538 

300-500 mg m-2 d-1 [63], more than is emitted from landfills generally (see below, Section 5). 539 

The amount of CH4 produced in rice paddies is actually ten times greater than what is emitted; 540 

90% of production is consumed by methanotropic bacteria at the sediment-water interface and in 541 

the water column of a flooded paddy [12]; increasing the activity of these methanotropes 542 

mitigates CH4 production [71]. Methanotropic bacteria are discussed in Section 5. 543 

Increasing incomes lead to less consumption of starchy food and more consumption of 544 

meats, dairy, and fish [72]. There has been increasing consumption of protein and energy rich 545 

foods, and convenience foods, and decreases in rice consumption, especially in Asia [73]. IPCC 546 

[11] reports that changes in diet could increase non-CO2 emissions from agriculture by a factor 547 

of three. Because modern diets include more meat, ruminant numbers have increased more than 548 

human population has. Grazing systems now occupy 30% of ice-free land surface [74]. 549 

Ruminants (primarily cattle but also sheep and goats) harbor bacteria in their digestive system 550 

that aid in the degradation of fodder; the animals absorb organic compounds released as 551 

breakdown products from the bacteria, but the bacteria also produce CH4, ammonia, and CO2 as 552 

waste gases, which the animals emit [12]. The primary point of production is the foregut, which 553 

allows the animals to further digest the microbes and non-gaseous waste compounds and 554 

breakdown products produced by this fermentative process [64]. The output of manure and gas 555 

from rumens is generally proportional to the number of animals, although lower quality feed 556 

increases both rumen releases and manure production slightly (approximately 5%) [75], and 557 

approximately 50% of ruminants graze on lower quality feed on grasslands [74]. As much as 558 

90% of methane releases from animals is from the rumen releases [63], although one study 559 

making direct measurements of contained animals found liquid manure a greater contributor 560 

[76]. Field-dried manure may not produce much CH4 at all [1]. Increased use of liquid manure 561 

systems has caused a doubling in US manure-related CH4 emissions over 20 years [24]; EIA [27] 562 
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found releases from enteric fermentation to still be three times greater than animal waste-related 563 

gases, and, for the US, found swine and cattle manure were about equal in emissions. Although 564 

cattle generate most enteric CH4, sheep, goats, and water buffalo also are major ruminant 565 

producers of CH4; camels, horses, mules, and pigs are minor emitters. Wild animal foregut 566 

ruminants include deer, but they produce much less CH4 per unit feed than cattle. Wild animal 567 

hindgut fermenters, mostly minor CH4 emitters, include most birds, fish, and reptiles, rats, 568 

rabbits, and elephants [64]. Many other organisms harbor methanogens in their digestive system, 569 

including half of all humans. It is thought methanogens grow too slowly to exploit potential 570 

substrates in most digestive systems and so cannot maintain their populations except under 571 

special conditions [36]. Herrero et al. [74] found two-thirds of CH4 releases due to animals was 572 

from ruminant outgassing. In the US, rumen gases and manure account for nearly 40% of all 573 

anthropogenic CH4 releases [24]. India is the greatest single source of ruminant CH4 due to its 574 

exceptionally large population of cattle, although most are not being raised for direct 575 

consumption [10].  576 

 2.2 Coal mines 577 

Methane (and CO2) are incorporated in coal deposits, and therefore can escape to the 578 

atmosphere when coal is mined [77], making it an important source of CH4 releases. This source 579 

is declining (absolutely and relatively) for two reasons: increased use of controls to reduce 580 

releases, and declining use of coal as an energy source as it is replaced by natural gas. Natural 581 

gas is a greater source of fugitive CH4 than is coal currently [10]; in the US, EIA [27] estimated 582 

the ratio at about 2:1. This difference will grow with greater use and exploitation of natural gas 583 

resources. 584 

Methane is often released from coal directly, but also from nearby strata, because more 585 

CH4 is generated during coalification than can be stored in the coal seams themselves. Mining 586 

disturbance of the surrounding rocks and coal seams releases the gas from its storage. In open pit 587 

mines, the CH4 escapes directly to the atmosphere, but in underground mines the gas seeks 588 

means to escape, including shafts and tunnels, although to maintain safety for miners 589 

concentrations in these areas are actively sought to be minimized. Because open pit mines 590 

usually exploit younger and shallower coal seams, it is thought that they hold less CH4 per tonne 591 

of removed coal, and it is also assumed that the overlying strata are not significant sources of gas 592 
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[78]. Gas is intentionally ventilated from underground mines for safety reasons, and CH4 evolves 593 

from stored coal [79].  594 

Because it is difficult to measure releases from open pits and there are numerous means 595 

for gas to escape underground mines, estimates of CH4 produced by coal mining tend to use 596 

indirect measurements based on mining rates. Inactive mines are therefore usually not accounted 597 

for, and variations in coal types and particularities of mining operations, all of which affect the 598 

rate of release of gas, are usually not addressed [78]. In the US, abandoned coal mines were 599 

estimated to release about 10% of the amount that active mines do [24]. In China, 48% of active 600 

mines are classified as "gassy" [80]. Reasonable estimates of underground mine CH4 degassing 601 

can be made where occupational safety measures are in place, as CH4 represents a major threat 602 

of explosion in mines. Aggregating data across different reporting bodies make it hard to 603 

accurately use these data, however [78]. 604 

Nonetheless, estimates of coal mine CH4 releases amount to between 8% and 12% of all 605 

anthropogenic CH4 in the atmosphere [78] [10] [81]. The greatest producers of coal (China, US, 606 

India, Russia) also emit the most CH4, although the use of horizontal and vertical wells to 607 

recover coal gas from coal seams and surrounding rocks (respectively) is increasing, especially 608 

in the US and China [81] [80]. Coal mining was estimated to produce about 25% of all US 609 

anthropogenic releases [24]; reductions in coalbed CH4 releases not only decrease CH4 emissions 610 

and therefore help the environment, they provide an opportunity for energy recovery, and 611 

increase miner safety [80]. 612 

 2.3. Oil and gas systems 613 

Methane is the primary constituent of natural gas (they are sometimes considered to be 614 

synonymous); thus it is not surprising that natural gas (its mining, processing, shipment, and use) 615 

should result in fugitive CH4. Methane is also one of the volatile hydrocarbons released from 616 

petroleum, and natural gas is often co-located with petroleum. Therefore it is also released in the 617 

mining, processing, transport, and use of petroleum, although the scale of those releases is much 618 

smaller than releases associated with natural gas operations. In the US, oil operations release 619 

about 25% as much CH4 as natural gas systems [24], although note EIA [27] estimated that 620 

releases from petroleum were only about 15% of natural gas emissions. 621 

“Conventional” estimates of fugitive gas releases are less than 2% of natural gas 622 

production [1] [82]; Larsen et al. [59] estimated the impact at 60 Tg yr-1 (approximately 3% of 623 
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all natural gas produced), more than 15% of all anthropogenic releases; other estimates are up to 624 

50% greater [3]; IPCC [10] ranges of releases are higher, as well, suggesting oil and gas systems 625 

are responsible for 30% or more of anthropogenic fugitive CH4. In the US, EIA [27] found 626 

natural gas was responsible for about one-third of all anthropogenic CH4 releases.  627 

Official data on “methane leakage” (CH4 that escapes during drilling, production, and 628 

venting at the exploitation site) for the US, Russia, and Canada are similar in scope, but other 629 

major producers tend to report much lower release rates (sometimes only one-twentieth of the 630 

“Big Three”) [59] which may explain why data based on these statistics is lower than other 631 

estimates. Some studies find potential releases from conventional well head sites may be as 632 

much as 6%, and for fracking the upper end estimate was nearly 8% of produced gas [20]. 633 

Pneumatic devices (55-150 fittings or so per well) and storage facilities are the major 634 

contributors [59] [20]. One sampling program at 190 representative sites in the US found 635 

relatively low loss rates, equating to an estimate of 0.42% of production [83]. USEPA [24] found 636 

that production releases are declining with time because of technology substitutions that leak 637 

less. However, Allen et al. [83] estimated 75% more leaks from equipment than USEPA, and a 638 

study of seals and compressor packing found emissions that were about 10 times greater 639 

compared to standard emission factors [84]. On-shore systems leak more than off-shore systems 640 

[59]. Brandt et al. [62] note that high emissions sites (estimated to be 0.05% of all wells) are the 641 

source of over 50% of the total US leakage, so that sampling that may include such a well site 642 

would be biased upwards; conversely, a sampling set that did not include such sites would be 643 

biased low. Another potentially large source of CH4 is transportation losses, because of 644 

compressors and pneumatic devices [59]; USEPA [24] found that changes in piping have 645 

reduced leaks in this part of the industry as well. Estimates for large producing countries are that 646 

0.5%-0.7% of total production is lost in transportation, although 2.5% to 10% of all transported 647 

gas cannot be accounted for. These numbers include thefts and poor input-output accounting as 648 

well as leaks, and may be biased by maintenance issues in Russia at the turn of the millennium 649 

[20]. Compressors are the source of most leaks at processors [59]. Processors are commonly 650 

thought to be small emissions sources, ~0.2% of production, although measurements in Canada 651 

resulted in 1% estimates [20]. Samples from 130 sites that gather and process natural gas in the 652 

US found that the two processes appear to lose about 0.47% of production [85]. One study of the 653 

impact of pipeline losses found that the rate of losses was great enough to more than offset 654 



32 

increases in CO2 emission efficiency gains, if natural gas use were to replace gasoline or diesel 655 

fuel use, over significant time frames [86]. Increases in fracking for both oil and gas may 656 

increase production losses, because of estimates that fracking has two orders of magnitude 657 

greater releases in the drilling phase [20]; USEPA [24] found that fracking had increased overall 658 

industry-wide production emissions by 25%; contrariwise, the large sampling effort reported by 659 

Allen et al. [83] found flow-back releases of CH4 to be much lower than USEPA [24] estimates. 660 

 2.4 Wastewater 661 

Methane is produced in the processing of human sanitary wastes (generally, wastewater) 662 

when anaerobic conditions exist [87]. This can be deliberately induced or be the result of 663 

happenstance, or may be due to error. Most large sewage treatment plants operate aerobically to 664 

treat inputs, which should not result in methanogenesis. Some systems, particularly anaerobic 665 

lagoons and constructed wetlands, intentionally use anaerobic consumption of organic matter as 666 

a primary treatment process, causing CH4 emissions. On-site sanitary systems for houses 667 

(cesspools and septic systems) tend to operate anaerobically and so produce CH4. Latrines also 668 

decay wastes anaerobically [24]. 669 

Sludge collected at waste water facilities is often intentionally digested anaerobically to 670 

stabilize it [24]. Digesting sludge reduces the mass of material, makes dewatering residues easier 671 

and decreases their odor potential. Anaerobic digestion is less susceptible to poisoning than 672 

aerobic digestion, but takes much longer. The produced CH4 may be utilized for energy [88]. 673 

Wastewater is a relatively insignificant source of fugitive CH4 in the US, estimated at less 674 

than 3% of all anthropogenic releases [24]; this is less than the 5% to 10% worldwide estimates 675 

reported in Table 4 (above). USEPA [24] estimated that about 40% of US emissions were from 676 

industrial wastewater facilities in 2010, up from one-third in 1990. Paper pulp plants and meat 677 

and poultry waste treatment plants are the two largest industries, and collectively are responsible 678 

for 90% of US industrial waste water CH4 releases [27]. RTI International [89] provides a 679 

methodology to determine the amount of CH4 generated by anaerobic processing at wastewater 680 

treatment plants. According to USEPA [24] data, on-site systems, privies, and latrines produce 681 

approximately the same amount of CH4 person-1 d-1 (10.7 g) as do sewage treatment plants (from 682 

sludge) (11 g person-1 d-1), although all of the CH4 is released from the on-site systems, and 683 

much less is released from most sludge digesters – one estimate is that CH4 releases are only 684 

10% of production [1]. RTI International [89] provides a methodology to estimate CH4 685 
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generation at any sludge digester, but does not estimate how much may be released to the 686 

atmosphere. During standard operations, only 4% of produced CH4 was released from one 687 

Japanese plant, but during operational troubles (such as foaming in the digester) release rates 688 

could be more than 30% [90]. Measurements at a French sewage treatment plant found most CH4 689 

releases come from pretreatment of wastes, or from leaks at sludge digesters; in general, the 690 

range of releases from sewage treatment plants was reported to be 0.1-0.9 g person-1 d-1 [91]; it 691 

was found that three-quarters of CH4 releases from sewage treatment plants is from digesters. 692 

Better operation of ventilation systems can reduce off-gassing [92].  693 

Materials other than human sanitary wastes are anaerobically digested [93] [94] (also see 694 

Section 5.2). In the EU in 2010, “biogas” (CH4) was produced from landfills (27%), sewage 695 

sludge (10%), and from agricultural residues (often a mixture of crops and animal manure) and 696 

solid waste [95]. In 2012, 202 on-farm digesters for manures and crop residues were in operation 697 

in the US [96]. Leakage from these plants should be less than sewage treatment plants, as a 698 

portion of the attributed CH4 releases from sewage treatment plants is not from sludge processing 699 

but rather is due to direct atmospheric venting, either from plants operated anaerobically or from 700 

aerobic plants experiencing process upsets. 701 

 702 

  703 
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3. Methane emissions from landfills 704 

Landfills release CH4 to the atmosphere because much of the waste buried in them is 705 

organic. Biological degradation of the organic matter consumes interstitial O2, and the waste pile 706 

becomes anaerobic. When redox conditions support methanogenesis, CH4 is released as a waste 707 

gas [97]. Although landfill surfaces are sometimes sealed from the environment in developed 708 

countries, and landfill surface soils may host methanotropes, some CH4 is released to the 709 

atmosphere. Global releases appear to be on the order of 40-75 Tg yr-1 (Table 4) (see [98], 710 

estimating 54 Tg yr-1, but [99] reporting 30-35 Tg yr-1). Reports are also spatially variable; as of 711 

the mid-2000s, for instance, field measurements showed release rates from sanitary landfills 712 

ranged over seven orders of magnitude, from 0.0004 g m-2 d-1 [100] to >10,000 g m2 d-1 [101]. 713 

Reports also include negative values (where landfill soils consume atmospheric CH4).  714 

Not all generated landfill methane is emitted into the air; some is stored in the landfill in 715 

voids and part is oxidized to CO2 by microbes in landfill soils. Variations in stored CH4 were 716 

found to be considerable, resulting from variable leachate levels, changes in internal geometries, 717 

dissolution into and out of leachate, changes in gas extraction rates, and relative changes in 718 

atmospheric pressures and temperatures [101]. 719 

Since CH4 releases in solid waste management are generated almost entirely by landfills, 720 

and landfills are the dominant means of waste disposal worldwide, CH4 generation should 721 

correlate to waste generation rates [98] [99]. IPCC collects country-specific data for greenhouse 722 

gas releases, including reports on landfill emissions, and requests annual updates. Instructions to 723 

produce the reports were released in 1994 and revised first in 1996 [102] and again in 2001 724 

[103]. USEPA, which generates comprehensive world estimates of GHG releases, uses the IPCC 725 

data as a starting point; USEPA uses other data sets to adjust IPCC values, and to determine data 726 

where none were reported to IPCC [23]. Many reporting countries assume gas generation is 727 

proportional to waste generation, and use some conversion factor to transform whatever waste 728 

data may be available to a CH4 release value [104]. The IPCC estimation uses Equation 1 [105]: 729 

 730 

Me = ([MSWt * MSWf * MCf * DOC * DOCf * F * (16/12)] - R) * (1 - OXf)    (Eq. 1)  731 

 732 
with 733 

Me = methane emitted (Tg yr-1) 734 
MSWt = total MSW generated (Tg yr-1) 735 
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MSWf = fraction of MSW landfilled in an engineered landfill 736 

DOC = fraction of biodegradable organic carbon in MSW 737 

DOCf = fraction of organic carbon converted to CH4 or CO2 738 
F = fraction of CH4 in landfill gas 739 
R = recovered CH4 (Tg yr-1) 740 
OXf = fraction of CH4 oxidized at the landfill 741 
 742 

However, differences in waste management processes mean that is a too simplistic 743 

conceptualization to be useful to generate meaningful national and regional CH4 generation and 744 

release rates. Alternatives to landfilling of wastes are common: recycling diverts waste, both by 745 

organized programs in developed countries, and through more informal sectors in the developing 746 

worlds. Waste may not be collected for management in some areas. Collected wastes may be 747 

dumped in unofficial disposal sites, or at unengineered disposal points (dumps) [106]. Sanitary 748 

landfills (engineered structures intended to mitigate some environmental impacts of landfilling) 749 

may or may not collect gases produced in the fill. Dumps, depending on climate, thickness of 750 

waste deposits, quality of materials, and whether or not they were set on fire to control odors and 751 

vermin, may or may not produce gas [98] [107]. Kirschcke et al. (2013) characterize 752 

uncertainties associated with landfill CH4 generation rates at about 30%. IPCC estimates for 753 

worldwide releases, using two alternative estimation means, also narrowed the gap between them 754 

to 30% for 2005 [104]. There is some skepticism regarding the accuracy of these kinds of data, 755 

however [62]; the latest IPCC report [11] notes that the poor quality of waste data affects the 756 

value of GHG estimates derived from them. 757 

Table 6 shows estimates of CH4 releases from landfills worldwide, by various regional 758 

definitions, using some of the more comprehensive global accountings. The values in Table 6 are 759 

less than many of the broader sectoral estimates presented in Table 4. This may partially stem 760 

from more specific assessments accounting for mitigation of methane generation better, or from 761 

rounding errors in assessments with larger scopes. 762 

.763 
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Table 6. Regional landfill methane emission estimates (Tg yr-1) 764 

 1990 1995 2000 2005 2010 2012 

 [58] [108] [58] [108] [109] [58] [108] [109] [58] [108] [109] [58] [110] [109] [109] 

Africa 2.60 3.50 3.14 3.92  3.71 4.38  4.14 4.83  4.55 4.82   

Cent. & South America 2.13 3.42 2.49 3.80  2.96 4.11  3.14 4.41  3.34 3.40   

Middle East 1.55 1.63 1.79 1.89  1.94 2.15  2.17 2.44  2.40 3.20   

Asia             6.34   

China/Cent. Pacific Asia  2.05  2.18   2.29   2.37      

SE Asia  4.12  4.21   4.10   4.54      

Non-OECD Asia 18.66 17.85 19.09 16.98  17.49 14.24  17.04 13.44  17.78    

Europe             4.15   

EU 8.37  7.98   6.98   5.77   5.24    

EU 27     6.60   6.11   5.20   4.25 3.91 

EU 15     6.35   5.82   4.77   3.69 3.32 

OECD 90 & EU 5.70  6.28   7.08   7.53   8.02    

Non-OECD Europe & 

Eurasia 2.99  3.19   3.48   3.80   4.23   

 

Non-EU East. Europe  0.58  0.57   0.60   0.63      

Non-EU former USSR  3.11  3.11   2.90   2.94      

Eurasia             2.66   

N. America             0.97   

OPEC 1.75  2.03   2.15   2.80   3.06    

World Total 33.62 36.26 35.97 36.65  36.66 34.78  37.81 35.59  40.32 40.32   
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As mentioned, IPCC has required member nations to estimate CH4 releases under 765 

various source categories through annual reporting. For landfills, IPCC has created an 766 

estimation methodology that depends on data for landfilled wastes over time (because 767 

landfills emit CH4 from buried wastes over decades). IPCC inventories show that landfills are 768 

approximately 2% of worldwide emissions. Approximately 4%-5% of  CH4 releases from 769 

developing countries come from landfills, although per capita landfill CH4 emission rates 770 

tend to be much lower (because much smaller amounts of wastes are managed through 771 

landfills) [31]. Transition from unmanaged wastes to a modern waste management system 772 

can increase CH4 emissions by a factor of five [58]. Releases of CH4 from the most 773 

developed countries are declining on a per capita basis due to growing controls on landfill 774 

releases, and, for some EU countries, are declining absolutely due to compliance with the EU 775 

Landfilling Directive (see Section 7, below) 776 

The data in Table 6 generally show increasing releases in all areas of the world, and 777 

so the world summaries show ~10% increase from 1990-2010. This is twice as great as the 778 

atmospheric increase over the same time period. The one area of the world with decreasing 779 

landfill CH4 releases is Europe. The European Union has passed legislation (see section 7) 780 

reducing the delivery of organic wastes to landfills. As shown just below in section 3.3, some 781 

of the decreases for particular member states are very dramatic. 782 

3.1 United States landfill emissions 783 

US landfill release values in the annual USEPA Greenhouse Gas Inventories were 784 

generated based on a FOD model specified by IPCC (in 2006). The model estimates CH4 785 

generation based on waste inputs. USEPA modified the model to match results from a survey 786 

of 52 US landfills, which were found to be affected by rainfall. Therefore US landfills were 787 

stratified into three climate categories (high rainfall, medium rainfall, low rainfall), with CH4 788 

generation rates dependent on the climate and waste inputs. The total amount of CH4 789 

generated was reduced by data specifying gas combusted to produce energy or flared prior to 790 

release, with a 10% reduction additionally applied to account for methanotrope consumption 791 

of CH4 at the landfill-atmosphere interface [25]. The data are also affected across the reports 792 

by changes in USEPA modeling of solid waste generation. USEPA adjusts previous years' 793 

estimates when it alters the overall model, and so part of the changes in the data has to do 794 

with the changes in waste generation created by waste model alterations. 795 

An independent estimate of total landfill gas (LFG) production based on summing 796 

reports from individual landfills estimated that 9 Tg yr-1 were generated. This is 50% greater 797 

than the 2012 USEPA estimate of 6 Tg yr-1, which was based on the BioCycle estimate of US 798 
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waste generation, and nearly twice as large as the USEPA estimates based on the USEPA 799 

waste generation model. According to this paper, more gas was used for beneficial purposes 800 

(39%) than was flared (27%), but 34% of the available gas was emitted to the atmosphere 801 

(even allowing for CH4 oxidation in cover soils) [111]. 802 

US landfill CH4 emission estimates are presented in Table 7.803 
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Table 7. Estimates of US landfill CH4 emissions (Tg yr-1) 804 

 805 

Source 1990 1995 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 

[108] 8.20 

8.20 

7.73 

7.73 

6.22 

6.22 

    6.22 

7.46 

        

USEPA 2012c 7.02 6.64 5.32     5.36     6.18    

[110]             6.18    

[111]               9  

[25] 7.45           6.32 4.87 4.85 4.61 4.59 

[24] 6.54       4.68   4.77 4.81 4.55 4.43 4.21  

[112] 6.54       4.70  4.65 4.53 4.72 4.40 4.22   

[113] 6.53       4.71 4.66 4.65 4.55 4.62 4.45    

[114] 6.52  4.73     4.70 4.67 4.64 4.60 4.92     

[115] 6.61 6.31 5.13     5.32 5.39 5.36 5.09      

[116] 6.61 6.32 5.21     5.43 5.55 5.67       

[117] 6.60 6.27 5.10 4.93 5.05 5.30 5.15 5.20 5.29        

[118] 7.12 6.88 5.62 5.41 5.54 5.74 5.61 5.60         

[119] 7.61  5.94 5.79 5.94 6.05 5.96          



40 

The data in Table 7 show that more recent model outputs tend to report fewer 806 

releases, comparing year to year. However, the models also tend to show decreasing releases 807 

over time. This is due to changes in landfilling rates, but also because more gas is being 808 

captured and flared, or used to produce a form of energy. There is not great confidence in 809 

USEPA waste generation estimates (see [120] [121]; the nearly 100% difference between 810 

government and independent estimates for 2012 underscores how larger estimates of waste 811 

generation lead to much larger estimates of US landfill emissions. This difference in the 812 

estimates is nearly 1% of total world CH4 emissions.  813 

3.2 China landfill emissions 814 

China waste management numbers are uncertain. In 2006, it was estimated that annual 815 

per capita waste generation in urban areas was a little over 500 kg [122]. One evaluation used 816 

those values to suggest urban waste generation was ~340 MT, and about two-thirds was 817 

collected [123]. The official collection rate ("harmless treatment") for 2010 was 77.9%. 818 

Suburbs and exurbs of the cities usually have little to no collection. Amounts of wastes are 819 

growing nearly 6% a year: partly due to increasing per capita generation, but partly due to 820 

increased collection efforts [124]. With recycling rates less than 5%, and incineration 821 

estimated at 15% in 2010, nearly all (~80%) managed urban waste was landfilled [123].  822 

Rural waste is different in quantity and quality. Waste generation is about 400 kg 823 

person-1 yr-1. There are low collection rates (~25%). Rural areas have lower incineration 824 

rates, and less recycling, so that about 90% of the managed wastes are landfilled [123]. This 825 

suggests urban per capita landfilling rates are ~300 kg, and rural per capita rates are 826 

somewhat less than 100 kg. Most of the remaining waste is dumped, either informally as a 827 

form of litter or in unregulated sites [123].  828 

Waste generation is not only different on an urban-rural axis, but according to 829 

geography. Waste composition in the north of China is very different from that in the south, 830 

due to differences in food consumption, but also because of domestic use of coal. Coal ash 831 

can comprise up to 70% of northern MSW at times in winter, although substitution with other 832 

fuels (predominantly natural gas) is leading to rapid change [124].  833 

Cai et al. [125] found about 75% of “safely disposed” MSW was landfilled in China 834 

in 2012. The number of sanitary landfills has decreased from a peak value in 2001, but the 835 

tonnage of waste landfilled has steadily increased. A scoring system established by the 836 

Ministry of Housing and Urban-Rural Construction classifies the nation's landfills: scores 837 

greater than 85 is Class I and between 70 and 85 is Class II, with 190 out of 365 landfills 838 

rated as Class I or II in 2005, with 300 landfills reaching Class I or II in 2008 [126]. 839 
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It is not clear what source for MSW generation data was used to drive the gas release 840 

models, but it appears it was the same for all of the US reports, and is likely to be the official 841 

government estimate of waste generation. One independent assessment used data from 2007, 842 

with site-specific waste generation and climatic information used to drive a first order decay 843 

(FOD) model (see Section 4), with different degradation rates for a number of organic waste 844 

fractions. The work divided China into seven regions to differentiate waste composition. 845 

Three different classes of landfills were identified based on tonnages managed, and data from 846 

2,107 landfills were used (630 sanitary landfills, 1,477 “simple” landfills). The model 847 

predicted 1.186 Tg CH4 emissions [125].  848 

China landfill CH4 emissions data are presented in Table 8. The data show slowly 849 

increasing emissions, with the rate of increase about 5% decade-1. 850 

851 
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Table 8. Estimates of China landfill CH4 emissions (Tg yr-1)  852 

 853 

Source 1990 1995 2000 2005 2007 2010 

[108] 1.94 2.05 2.13 2.19  2.24 

[58] 1.92 2.03 2.12 2.19   

[110]      2.24 

[125]     1.19  

 854 

  855 
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3.3 Other key countries landfill emissions 856 

In India, MSW “generation” data was said to be 6 MT in 1947, and 48 MT in 1997 857 

[127], with 0.5-0.7 kg person-1 d-1 generated in urban areas [128]. These data most probably 858 

refer to the amount of managed MSW; data from Rathje’s work with Mexico City households 859 

in the 1980s suggests less developed countries generate approximately the same amount of 860 

MSW as developed countries (2-3 kg HH-1 d-1), although the composition is very different 861 

[129], and it is clear many developing countries do not have any organized means to manage 862 

the generated wastes. IEA [130] set India urban waste generation at 42 MT, and said 50% to 863 

90% is sent to uncontrolled dumps with the remainder left as litter or sent to absolutely 864 

uncontrolled sites. Sampling of urban wastes find they contain a high level of putrescible 865 

material, largely food wastes, which means when collection is provided it must be frequent -- 866 

as often as every day.  However, street sweepings and construction and demolition debris in 867 

wastes mean that much of landfilled waste is inert (20-45%). Most recyclable material is 868 

scavenged before disposal (or at the disposal site, before burial) [131].  869 

Tremendous rates of recycling are achieved through the informal sector; there is little 870 

to no source separation. Most wastes are disposed of as litter or at informal dumps. 871 

Composting is also widely practiced, but the end product is often low quality due to physical 872 

contaminants (plastics, glass, metal) in the feedstock [131]. Jha et al. [128] cited reports that 873 

70-90% of India’s landfills, managing three-quarters of its waste, were “non-scientifically 874 

managed ... open dumpsites.” Local funding is used for municipal waste management, and 875 

obtaining capital for large projects is considered to be difficult [131].  876 

Application of the earliest IPCC methodology, which assumed all CH4 was emitted in 877 

one year of waste deposition, resulted in an initial nationwide landfill emission rate of 0.334 878 

Tg yr-1 for 1990-1991, and, using revised data, an increasing rate of 0.263 Tg yr-1 (1980) to 879 

0.502 Tg yr-1 (1999). A revised, “triangular” approach (a linear approximation of the FOD 880 

methods) estimated release rates of 0.119 Tg yr-1 to 0.4 Tg yr-1 over the same period [132]. 881 

Estimates by others of CH4 generation around 2000 ranged from 0.33 to 1.80 Tg yr-1, plus an 882 

unknown amount from “open dumping and improper landfilling” [127]. Joseph [131] 883 

suggested that releases nationwide range from 0.5 to 1.5 Tg yr-1. A comparison of integrated 884 

fluxes based on field measurements at open dumpsites to IPCC modeling estimates for the 885 

sites found the IPCC methodology outputs were at least two orders of magnitude greater 886 

[128].  887 

The other countries reviewed here (Table 9) were selected to provide a diversity of 888 

data sets. Indonesia, for instance, has a much smaller population than India (by a factor of 5), 889 
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and is developmentally similar. Nonetheless, reported emissions are much greater than India 890 

emission rates. South Africa is also a developing country. Its emissions on a per capita basis 891 

far exceed Indonesia's. Brazil and Mexico are similar developmentally, but Mexico has 40% 892 

fewer people. Mexico's landfill emissions are twice as great as Brazil's, and sometimes were 893 

found to be greater than Russia's -- a country that is much more developed and has a 894 

somewhat greater population. In 1990, Germany's landfill emissions were on a par with 895 

Russia's. Now Germany emits a tenth of what Russia landfills do. This is due to aggressive 896 

implementation of the EU Landfill Directive in Germany, which aims to divert degradable 897 

organic wastes from landfills. On the whole, the table shows increasing CH4 emissions from 898 

landfills (with the notable exception of Germany) -- a trend that makes intuitive sense, given 899 

increasing populations in these countries and also generally increasing affluence, and perhaps 900 

improving methods of waste management. However, the disparities in the comparative 901 

generation rates make it seem likely that the same estimation processes are not being applied 902 

evenly among these different states. 903 

 904 
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Table 9. Estimates of some key country landfill CH4 emissions (Tg yr-1) (2013 population estimates from [133]) 905 

Country Population (M) 1990 1995 2000 2005 2010 

Brazil [108] 

[58] 

200 0.79 0.92 1.06 1.10 1.18 

0.62 0.69 0.74 0.79  

Germany [108] 

[58] 

[110] 

81 1.84 1.73 1.13 0.68 0.33 

1.50 1.20 0.68 0.43  

    1.42 

India [108] 

[58] 

[132] 

[132] 

[127] 

1250 0.54 0.59 0.59 0.60 0.63 

0.51 0.58 0.66 0.76  

0.37 0.44    

0.30 0.35    

  0.33-1.80   

Indonesia [108] 

[58] 

250 0.91 1.02 1.13 1.24 1.35 

0.37 0.40 0.43 0.46  

Mexico [108] 

[58] 

[110] 

122 0.78 1.23 1.55 2.34 2.69 

1.24 1.36 1.47 1.58  

    2.69 

Russia [108] 

[58] 

[110] 

144 1.34 1.48 1.65 1.90 2.25 

1.80 1.80 1.67 1.63  

    2.25 

South Africa [108]  

[58] 

53 0.67 0.73 0.78 0.82 0.85 

0.67 0.72 0.78 0.80  
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4. Methane emission estimation models 906 

LFG modeling is the practice of forecasting gas generation, emissions, and recovery 907 

based on past and future waste disposal histories and estimates of collection system 908 

efficiency [134]. Modeling is relied upon due to complexities and uncertainties associated 909 

with methane production (methanogenesis), consumption (methanotrophic oxidation) and 910 

LFG transport processes. These combine to result in field measurements of landfill methane 911 

emissions that range over seven orders of magnitude (less than 0.0004 g m-2 d-1 [100] to more 912 

than 10,000 g m-2 d-1 [101]). Site precipitation, preferential flow paths within the waste mass, 913 

the distribution of methanotropes in cover soils, and underlying waste quality and history all 914 

affect measurements at a particular place at a landfill. Barometric pressure has also been 915 

identified as a key environmental control on measurements of release rates [135]. Although 916 

approaches to integrate areal site releases are available (see Section 4.4), the most common 917 

means to estimate a site’s gas emissions is through a model [121]. Therefore, the 918 

quantification of methane generation and emission rates for a given field site requires a 919 

reliable model which considers spatial and temporal variability of waste inputs and local 920 

conditions. 921 

Mathematical models have been designed to simulate bio-chemical and physical 922 

processes governing the microbial degradation of organic material and the subsequent 923 

generation and transport of LFG, and the emission of LFG from landfill surfaces [134] [136]. 924 

USEPA and IPCC have developed the most widely applied methodologies for determining 925 

methane generation, and provided default values for model input parameters for sites and 926 

areas lacking specific input data. Model results do not always match well with real world 927 

results. For instance, Terraza and Willumsen [137] estimate gas collection projects 928 

underperform by 20% to 90% compared to expected values based on standard models. 929 

4.1 USEPA model (LandGEM) 930 

The Landfill Gas Emission Model (LandGEM) is an automated estimation model with 931 

a Microsoft Excel interface used to calculate CH4 and non-methane organic compound 932 

(NMOC) emission rates from MSW landfills. LandGEM relies on a FOD approach for 933 

quantifying emissions from the decomposition of MSW. The model is simple and flexible. 934 

LandGEM is best when site-specific climatological and waste disposal data are available, but 935 

has default values based on the country the model version is designed for. The base model 936 

was developed for US sanitary landfills. LandGEM 3.02 was released in 2005 [138]. It is 937 

based on a simpler model, the Scholl Canyon model developed by Emcon Engineering in 938 

1976, which used an exponential decay equation to estimate gas generation over time [137].  939 
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LandGEM uses Equation 2 to simulate emissions, using a 0.1 year time increment; the 940 

model assumes CH4 generation is at its peak shortly after initial waste placement (after a 941 

short time lag while anaerobic conditions are established).  The model also assumes that the 942 

rate of CH4 generation decreases exponentially as organic material is consumed by bacteria 943 

[138] (also see Section 5).  944 

QCH4 =  ∑ ∑ 𝑘𝐿0 (
M𝑡

10
) 𝑒−𝑘𝑡𝑖𝑗

1

𝑗=0.1

𝑛

𝑖=1

 945 

(Eq. 2)  946 

where: 947 

QCH4 = annual CH4 generation (m3 yr-1) 948 
i = 1 year time increment 949 
n = (year of the calculation) - (initial year of waste acceptance) 950 

j = 0.1 year time increment,  951 
k = methane generation rate (year-1) 952 
L0 = potential methane generation capacity (m3 Mg-1) 953 
Mi = mass of waste accepted in the ith year (Mg) 954 

tij = age of the jth section of waste mass Mi accepted in the ith year 955 
 956 

The value k, the degradation rate constant, is key to accounting for different 957 

conditions at different sites, or for area considerations. It determines how quickly mass is 958 

converted to CH4 [139]. Higher values of k result in higher initial CH4 generation amounts, 959 

which then decline more quickly as the waste mass ages. The default value for k is 0.04. 960 

Values of k used at US landfills range from 0.003 (for landfills in arid regions) to 0.70 (for 961 

wet bioreactor landfills); the typical input value is 0.05 [140]. The factors affecting k that are 962 

either easily measurable or approximated are precipitation, temperature, biodegradable 963 

fraction of the waste, and the depth of the fill. LandGEM models applied at 32 North 964 

American landfills were tuned using fuzzy logic, resulting in somewhat consistent predictions 965 

compared to estimated gas generation (r2 = 0.791, with predictions tending to underestimate 966 

output (Δ ranging from -18% to + 0.4%) [141]. 967 

Another key parameter is L0 (potential CH4 generation capacity), defined as the total 968 

amount of CH4 potentially produced by a metric ton of waste. L0 depends on waste 969 

composition, although the potential for waste decay is also lower in dry climates where the 970 

lack of moisture limits CH4 generation. The higher the organic content of the waste, the 971 

higher the value of L0. The default values for L0 is 170 m3 Mg-1 for NMOC emissions and 972 

100 m3 Mg-1 for CH4 generation (96 m3 Mg-1 for a bioreactor). USEPA [142] notes values of 973 

L0 at particular sites vary from 6.2 m3 Mg-1 to 270 m3 Mg-1.  974 
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LandGEM models can provide more data than just CH4 emissions. Although 975 

LandGEM will forecast lifetime emissions on an annual basis, it also forecasts standard 976 

pollutant outputs (the user must specify a NMOC concentration; LandGEM will speciate the 977 

projected emissions) [140].   978 

Some country specific variants of LandGEM have been created: China, Columbia, 979 

Ecuador, Mexico, Philippines, Thailand, and the Ukraine (Table 10). A Central American 980 

version has also been made (it is linked to on the Dominican Republic country area of the 981 

Global Methane Initiative website). 982 

  983 
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Table 10. LandGEM country-specific models 984 

 Default adjustments Calibrated 

Climate Waste 

Characteristics 

Landfill Practices 

Central 

America [143] 

3 precipitation 

amounts 

7 countries Landfill type, 

waste depth 

 

China [144] 3 zones Coal disposal Frequent fires, gas 

collection 

 

Columbia 

[145] 

5 topographical-

climatic regions  + 

rainfall data (Regions 

2/3)  

5 regional def. Landfill type, 

waste depth, 

history of fires, gas 

collection 

Yes 

Ecuador [146] 5 rainfall amounts Food waste 

percent 

Saturation, gas 

collection 

 

Mexico [147] 5 climate regions State or climate 

region 

Landfill type, 

waste depth, 

history of fires, gas 

collection 

 

Philippines 

[148] and 

Thailand [149] 

1 zone, some outliers  History of fires, 

gas collection 

 

Ukraine [150] 4 precipitation 

amounts 

 Landfill type, 

waste depth, 

severity of fires, 

gas collection 

 

 985 

  986 
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The China model has three climate variations which resulted in default values for k: 987 

cold and dry (k = 0.04), cold and wet (k = 0.11), and hot and wet (k = 0.18).  A combination 988 

of climate and waste disposal practices was used to set default values for L0. In dry climate 989 

zones, the default L0 = 70 m3 Mg-1, and in wet climate zones the default L0 = 56 m3 Mg-1. If 990 

significant coal ash is disposed (defined as >30% of waste inputs), L0 was decreased.  For 991 

landfills in cold and dry climates with significant coal, the default L0 = 35 m3 Mg-1, for cold 992 

and wet L0 = 35 m3 Mg-1 (k = 0.11), and for hot and wet L0 = 42 m3 Mg-1. A fire discount 993 

value was assigned if observed, frequent fires are seen at a site (30% of overall gas 994 

generation). Gas collection efficiency was discounted depending on site management: lack of 995 

waste compaction, absence of a working face, ineffective leachate management, shallow 996 

depth of waste, absence of daily-intermediate-final cover, and absence of the gas system in 997 

areas of the fill. Otherwise, the default gas collection efficiency was 85%. Although four 998 

landfills were surveyed to test the model, insufficient information was available to calibrate 999 

the model [144]. The model and manual are available in Chinese. 1000 

The Columbia model has five geographical zones based roughly on topography and 1001 

climate. In addition, five rainfall regimes (dry to very wet) were defined; these are applied in 1002 

Zone 2 and Zone 3. Five categories of waste were defined (based on waste samples from 51 1003 

cities) and these had default percentages assigned for the zones. Values of k vary based on 1004 

climate and the four degradable waste categories (so there are 20 different default values). L0 1005 

values were defined for each zone, using the IPCC calculation method (see below), based on 1006 

the assumed waste composition of the region and IPCC default values for the other elements 1007 

of the equation. Gas generation rates were discounted depending on four types of non-1008 

sanitary landfills and the depth of waste (greater or less than 5 m), and a history of fires. 1009 

Similar to the China model, gas collection efficiency was discounted depending on specifics 1010 

of site management: lack of waste compaction, absence of a working face, ineffective 1011 

leachate management, shallow depth of waste, absence of daily-intermediate-final cover, and 1012 

absence of the gas system in areas of the fill. An additional discount was assigned for general 1013 

poor site management. Model results were compared to gas measurements at two Columbia 1014 

landfills [145]. The model and manual are available in Spanish. 1015 

The Ecuador model set default k values based on four rainfall amounts (0, 250, 500 1016 

and 1000 mm yr-1) and two categories of food waste percentages (<50% or > 65%). It seems 1017 

likely the k values are meant to be interpolated if they fall between the set rainfall and food 1018 

waste parameters. Default L0 values were based on only three rainfall amounts (0, 250, and 1019 

500 mm yr-1) and the two food waste categories. Gas collection efficiency was based on the 1020 
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type of landfill gas extraction well used, how the landfill was capped, and the mass of waste 1021 

excluded from the gas collection area. The model was not calibrated [146]. The model and 1022 

manual are available in Spanish. 1023 

The first version of the Mexico model was developed in 2003; it was re-done in 2009. 1024 

The 2.0 Mexico model uses regional climate and waste generation data to set default k and L0 1025 

values. Five categories of waste were defined, four of which are organic and decay at varying 1026 

rates. A landfill is assumed to have either the specific state waste composition, if data are 1027 

available, or the regional waste composition. Default k values were created for each region 1028 

for each of the four degradable waste categories (they varied by a factor of three from 0.1 to 1029 

0.3); an overall default k value for each site can be computed based on waste composition. A 1030 

similar process was used to determine L0, although L0 was set to one value nation-wide for 1031 

the quickest (69 m3 Mg-1), medium slow (214 m3 Mg-1), and slowest (202 m3 Mg-1) decaying 1032 

wastes. Gas generation and collection efficiency were discounted similarly to the Columbia 1033 

model (above). The model was not calibrated [147].  The model and manual are available in 1034 

Spanish. 1035 

The Philippines model classified all of the country as hot and wet, although it was 1036 

recognized some isolated sites might be classified as dry (rainfall < 1000 mm yr-1).  The 1037 

default value for k was set at 0.18 (a dry landfill would use k = 0.10). The default value for L0 1038 

was 60 m3 Mg-1 (70 m3 Mg-1 for dry locations). A methane generation discount factor was 1039 

applied to sites with a history of fires, and methane collection efficiency was adjusted 1040 

similarly to the way it was for China (see above). The model was not calibrated [148]. The 1041 

model and manual are available in Spanish; there was no link to the model from the Methane-1042 

to-Markets Philippines Partner Country page. 1043 

The Thailand model is structured exactly like the Philippines model, and it was not 1044 

calibrated [149]. The model and manual are available in Thai; there was no link to the model 1045 

from the Methane-to-Markets Thailand Partner Country page. 1046 

The Ukraine model is structured similarly to the Mexico 2.0 model (above), using 1047 

similar factors to determine k and L0. The rainfall amounts are different; default k values 1048 

across the categories 0.011 to 0.15. Waste composition was based on 12 studies, and national 1049 

default values were determined for each of the four degradable categories: very fast (L0 = 69 1050 

m3 Mg-1); medium fast (L0 = 126 m3 Mg-1); medium slow (L0 = 214 m3 Mg-1); and, slow (L0 1051 

= 201 m3 Mg-1). Gas generation rates were discounted depending on four types of non-1052 

sanitary landfills and the depth of waste (greater or less than 5 m), and the severity of any site 1053 
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fires. Similar to the China model, gas efficiencies were adjusted based on site management. 1054 

The model was not calibrated [150]. 1055 

The Central America model was created for Belize, Costa Rica, El Salvador, 1056 

Guatemala, Honduras, Nicaragua, and Panama, and assumes most of the area receives high 1057 

amounts of rain (>1000 mm yr-1), but has adjustments for moderate rainfall and dry regions. 1058 

Values of k depend on waste composition. Two types of waste are defined. One is fast 1059 

decaying wastes (food and yard wastes) which have high default k values: 0.23 for high 1060 

rainfall, 0.20 for moderate rainfall, and 0.18 for dry areas. All other organic wastes receive 1061 

low default k values, which vary by country and by rainfall category, and are almost an order 1062 

of magnitude lower (ranging from 0.020 - 0.033). Each country has an assigned waste 1063 

composition, so the model can calculate a set k for any landfill in each country. Default L0 1064 

values were defined for each country, using the waste composition for the two types of waste 1065 

(fast and slow degrading). Gas generation rates were discounted depending on four types of 1066 

non-sanitary landfills and the depth of waste (greater or less than 5 m). Although data from 1067 

two landfills were collected to test the model, they were insufficient to calibrate the model 1068 

[143]. The model and manual are available in Spanish. The Dominican Republic page at the 1069 

Methane-to-Markets webpage also links to the Central America model. Since none of the 1070 

countries the model was created for are partners in the Methane-to-Markets program, none of 1071 

them have pages there to link to the model. 1072 

An adaptation of LandGEM 3.02 was made specifically for Finland by researchers. It 1073 

was calibrated to data collected at a large landfill, and the integrated decay factor of 0.18 yr-1 1074 

was much larger than the default value for LandGEM of 0.05 yr-1, and on the high end of the 1075 

US range of 0.003-0.21 yr-1 [151]. 1076 

LandGEM was used with redefined k values for waste classes, based on data from 1077 

landfills and laboratory mesocosm experiments, creating an overall k value for landfilled US 1078 

waste generally. An additional factor w, a measure of the biodegradation state in the landfill, 1079 

was added to the LandGEM model to reduce gas generation when conditions were not 1080 

optimal. The intention was to better forecast and control tmax, the time of greatest gas 1081 

generation. Enhancing degradation conditions affected tmax more than changing the 1082 

composition of the wastes [152]. Similarly, LandGEM has been coupled with measured 1083 

waste, gas, and leachate factors to create a decision-support model to determine whether or 1084 

not gas collection was likely to be economically viable. It was hypothesized that comparisons 1085 

of site measurements to literature values for methanogenic landfill conditions could 1086 

determine whether landfill wastes were decomposing "as expected," or if gas production 1087 
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model estimates should be adjusted. Sites where landfill dynamics were different than 1088 

expected might have problems meeting gas production forecasts [153]. 1089 

4.2. IPCC models 1090 

IPCC has developed two methodologies (Tier 1 and Tier 2) for estimating CH4 1091 

generation and emissions from landfills. The Tier 1 method calculates CH4 emissions based 1092 

on annual solid waste disposal quantities, whereas Tier 2 method is a FOD method [102] 1093 

[103]. Due to the quality and quantity of available data, developed countries tend to apply the 1094 

FOD method while developing countries rely on the Tier 1 method [105]. 1095 

The Tier 1 method is the default methodology for quantifying annual CH4 emissions 1096 

from solid waste disposal. Similarly in concept to LandGEM, landfill CH4 generation is 1097 

calculated based on MSW generation data (either measured or calculated), the landfilled 1098 

fraction of generated waste, and the potential CH4 generation capacity, except calculated not 1099 

on a site basis but for a country or part of a country, and based solely on a single year’s data – 1100 

no accounting is made for previously landfilled wastes (Equation 3, Equation 4). Net CH4 1101 

emissions are determined by subtracting CH4 recovery and oxidation (Equation 5).  1102 

 1103 

 QCH4 = MSWt  ∙ MSWf  ∙  L0              (Eq. 3) 1104 

 L0 = MCF ∙ DOC ∙ DOCf  ∙ F ∙  
16

12
             (Eq. 4)1105 

 QCH4  =  (QCH4 − R) ∙  (1 − OX)              (Eq. 5) 1106 

Where, 1107 

QCH4 = CH4 generation (Tg yr-1) 1108 
MSWt = MSW generated (Tg yr-1) 1109 

MSWf = fraction of MSW landfilled 1110 
L0 = potential CH4 generation capacity 1111 
MCF = landfilled fraction of MSW which decomposes anaerobically 1112 
DOC = fraction biodegradable organic carbon in landfilled MSW  1113 
DOCf = fraction DOC actually converted to CH4 and CO2 in LFG,  1114 

F = fraction of CH4 in landfill gas (v/v),  1115 
R = recovered CH4 (Tg yr-1) using active extraction systems 1116 

OX = fraction of CH4 oxidized by methanotrophs. 1117 
 1118 

For areas where more detailed data are available, the Tier 2 method is applied. Tier 2 1119 

uses the concept of FOD, with the quantity of waste landfilled in each year used to estimate 1120 

CH4 generation for the base year, and then decaying the methane generation over time. The 1121 

amount generated for each area is integrated over time (Equation 6).  1122 

 1123 

QCH4  = ∑ MSW𝑡𝑖 ∙ MSW𝑓𝑖 ∙ 𝐿0𝑖 ∙ (1 − 𝑒−𝑘) ∙ 𝑒−𝑘(𝑛−𝑖)𝑛
𝑖=1      (Eq. 6) 1124 
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Where, 1125 

i = year time increment  1126 

n = (year of calculation) - (initial year of waste acceptance) 1127 
MSWti = MSW generated in year i (Tg yr-1) 1128 
MSWfi = fraction of national MSW disposed in a landfill in year i,  1129 
k = CH4 generation rate (year-1) and  1130 
L0i = potential CH4 generation capacity in year i (m3 Mg-1). 1131 

 1132 

For countries with very good data sets, “Tier 3” methods based upon FOD methods 1133 

applied to specific landfills, or actual data on CH4 emissions from sites, can be substituted for 1134 

the broader methods discussed here. So, for instance, US landfill release values generated by 1135 

USEPA in the annual Greenhouse Gas Inventories are generated based on the FOD model. 1136 

USEPA modified the model to match results from a survey of 52 US landfills, which were 1137 

found to be affected by rainfall. Therefore US landfills were stratified into three climate 1138 

categories (high rainfall, medium rainfall, low rainfall), with CH4 generation rates dependent 1139 

on the climate and waste inputs. The total amount of CH4 generated was reduced by data 1140 

specifying gas combusted to produce energy or flared prior to release, with a 10% reduction 1141 

additionally applied to account for methanotrope consumption of CH4 at the landfill-1142 

atmosphere interface [25]. 1143 

In Finland, sampling at a large landfill resulted in a k value of 0.18, which is twice as 1144 

large as the default value for wet boreal and temperate climates. The landfill’s production of 1145 

CH4 was therefore twice as great over an 18-yr time period than the IPCC model predicted 1146 

[151]. 1147 

4.3 Other models 1148 

There are some other models that are variants on the LandGEM and IPCC models. 1149 

The Belgium model is very similar to LandGEM, and the German EPER model is similar to 1150 

the IPCC model. A validation study of all of  these models and the Scholl Canyon model 1151 

found LandGEM typically underestimated CH4 generation, by 10% on average but the other 1152 

models tended to over predict gas outputs, sometimes by average multiples of 3 (especially 1153 

for higher values of waste DOC) [154]. Still, most accounts assume LandGEM and the IPCC 1154 

approaches successfully track overall trends if not absolute outputs in CH4 generation. It is 1155 

understood they do not account for variable waste characteristics and uncertainties associated 1156 

with changeable environmental conditions. The models almost always use default oxidation 1157 

rates of 10%, established in 1996 based on data from one site [155], although site specific 1158 

rates are known to vary widely from that rate. Therefore, IPCC itself recognizes the accuracy 1159 

of CH4 estimations is poor, with deviations as much as 200% [156].  1160 
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One variant to LandGEM introduced differential decay rates for specific portions of 1161 

the waste stream. This model could be used to estimate future impacts to gas generation (and 1162 

collection) associated with changing  waste composition, due to differences in materials use 1163 

and diversion programs (such as declining paper discards due to the newspaper industry’s 1164 

decline) in the OECD, and forecasts of increasing food waste diversions. It can be tuned so 1165 

that relative decay rates for each organic component can equal in aggregate the decay rates 1166 

assumed for waste as a whole. It matches LandGEM for initial gas generation rates, of 1167 

course, but differences develop over time, due to forecast changes in incoming wastes and 1168 

also differences in the composition of residual landfilled materials (gas generation falls off 1169 

more quickly because the model decays more degradable materials first) [157].  1170 

Better models would include factors such as characteristics of landfill covers, specific 1171 

methanotrophic CH4 oxidation rates, and meteorological conditions [158]. A model that 1172 

includes these factors is the California Landfill Methane Inventory Model (CALMIM). 1173 

CALMIM is a field-validated one-dimensional methane transportation and oxidation model 1174 

that estimates landfill methane emissions. CALMIM does not rely on a first order model for 1175 

methane generation, but rather works with data on the major processes that control emissions: 1176 

(1) surface area and properties of the daily, intermediate, and final cover materials; (2) the 1177 

percentage of surface area for each cover type with engineered gas recovery; and, (3) 1178 

seasonal methane oxidation in each cover type as controlled by climate factors. CALMIM 1179 

incorporates two climate-related factors, meteorology and soil microclimate, which are 1180 

automatically accessed according to the site location and physical properties of cover 1181 

materials. In addition, CALMIM calculates daily emissions for each cover type which are 1182 

summed to provide an annual total for the site [158]. 1183 

 However, CALMIM itself excludes important elements in CH4 generation processes: 1184 

(1) it does not include trends of LFG generation; (2) it does not include gas transport 1185 

mechanisms other than diffusion, such as convection, ebullition, plant-mediated transport; (3) 1186 

it does not assign LFG recovery efficiency. Nonetheless, CALMIM has been validated at 1187 

several landfills [158].  1188 

It should be noted it has only been validated at landfills with LFG collection systems. 1189 

Its effectiveness is unknown if it were applied in developing countries. In China, for instance, 1190 

although larger, more recent landfills have installed gas collection systems, LFG recovery 1191 

rates even at these sites are low, generally below 30% [159] [160], which are well below 1192 

efficiency values used in CALMIM.  1193 
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A gas generation model developed at the University of Texas the (CLEEN model) 1194 

requires input data for waste composition, rainfall, and temperature. k values were developed 1195 

through parameterization of different types of waste by means of laboratory mescosm 1196 

experiments. The model was calibrated using data from 11 landfills, and a multi-variate 1197 

regression on the three input variables for the calibrated model had r2 = 0.79. When its 1198 

outputs were compared to those from the IPCC and LandGEM models and to site data, the 1199 

CLEEN model outperformed at four of six sites [161]. 1200 

The Clean Development Mechanism (CDM) allows a signatory to the Kyoto Protocol 1201 

with a commitment to reduce carbon emissions to sponsor or otherwise support a carbon 1202 

reduction project in a developing country, and apply a credit for the developing country's 1203 

reduction to its own commitment through standardized emission offsets (CERs) [162]. In 1204 

order to claim a CER, it must be demonstrated that the project would not have proceeded 1205 

otherwise. This most often means the activity must not be mandated [163]. For CDM credits, 1206 

a special model needs to be used. The model is driven by Equation 7 [164]: 1207 

 1208 

BEy  =  φ ∙ (1 − f) ∙ GWPCH4
∙ (1 − OX) ∙

16

12
∙ F ∙ DOCf ∙ MCF ∙ ∑ ∑ 𝑊𝑗,𝑥 ∙ 𝐷𝑂𝐶𝑗 ∙ 𝑒−𝑘𝑗(𝑦−𝑥) ∙𝑗

𝑦
𝑥=11209 

(1 − 𝑒−𝑘𝑗)                                                                                                        (Eq. 7)  1210 

where 1211 

BEy = avoided CH4 emissions, year y 1212 

φ = uncertainty correction factor (default == 0.9)  1213 
f  = fraction of generated CH4 captured 1214 
GWP = Global Warming Potential of CH4 (in 2006, set at 21) 1215 

OX = oxidation factor  1216 
F = proportion of CH4 in LFG 1217 
DOCf = fraction of DOC that degrades 1218 
MCF = correction factor for the facility type (a dump vs. a sanitary landfill, primarily) 1219 

j = waste type 1220 
Wjx = organic waste of type j disposed in year x (T) 1221 
DOCj = organic fraction of waste type j 1222 
kj = decay rate of waste type j 1223 

x = year (crediting period) 1224 
y = year (methane emissions calculations) 1225 
 1226 

This model is intended to allow a standard calculation for CDM credits. Verification 1227 

of model outputs (compared to actual gas production at China landfills) found the model 1228 

under-predicts gas generation. Analysts believe this is because decay rates (k) are too low; it 1229 

also could be that the default values for the gas capture efficiency (f) are incorrect. For China, 1230 
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they were originally set at 30% or 40%, and were raised to 60%; but there had been no field 1231 

verification of actual capture efficiency [164]. 1232 

4.4 Techniques to Monitor Methane Emissions 1233 

Measurement of LFG emissions is often carried out by the flux chamber method, 1234 

especially in settings where more complicated experimental approaches appear difficult to 1235 

install such as in less developed areas (c.f., [165] [166] [128] [167] [158] [127]), or where 1236 

power supplies are unavailable [168], but also still commonly at many North American and 1237 

European landfills [169] [170]. They are non-intrusive and portable, and allow for repeated 1238 

measurements with relative ease. A container is set, sealed to the atmosphere, on the landfill 1239 

surface. For the static chamber, gas accumulates due to emissions from the landfill surface, 1240 

and its constituents and their concentrations can be determined at an exit port. For a dynamic 1241 

flux chamber, a controlled flow of gas flows through the chamber and mixes with the 1242 

emissions, and flows out exit ports. The mixed gas can be analyzed and then emission rates 1243 

calculated from the results [171]. Negative values can result, and suggest the soil microbes 1244 

have consumed atmospheric CH4 [167]. Sensitivity is approximately 1 µg m2 s-1 [169], which 1245 

means data at controlled sites may not be as accurate as desired: quantified emissions for 1246 

landfills range from hundreds to thousand s of µg m-2 s-1 at uncontrolled landfills, and 1247 

fractions to hundreds of µg m-2 s-1 at sites with gas control [100] [101] [172]. Results are 1248 

spatially variable at any particular site, often by many orders of magnitude, and it becomes 1249 

labor intensive to generate extensive coverage of a site [173]; instruments are subject to 1250 

measurement drift, and maintaining seals on rough surfaces is sometimes an issue [169]. The 1251 

measurement variability means that extrapolation across one site or to other sites is often 1252 

approached hesitantly [101]. An important aspect of the closed chamber method is the 1253 

analytic approach taken to reify the readings made over the sampling period. Short time 1254 

scales mean the variations approximate a linear regression, but longer sampling periods 1255 

appear to require more complicated approximation means [168]. Flux chambers are very 1256 

good at quantifying localized gas releases; static chambers can have biased results at higher 1257 

flow rates due to the generation of back pressure which can inhibit outflows from the soil 1258 

[170], or even force some of the emitted gas back into the soil [169]. As mentioned earlier, 1259 

measurements from the flux chamber methods vary over seven orders of magnitude: from 1260 

less than 0.0004 g m-2 d-1 [100] to more than 10,000 g m-2 d-1 [101]. 1261 

Mass balance methods have been developed. Two perpendicular to the wind transects 1262 

are established (upgradient and downgradient), and a planar value for CH4 is determined for 1263 

both. The difference is the landfill output. The methane integrals are usually measured by 1264 
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either Fourier transform infra-red (FTIR) spectroscopy [174] or Tunable Diode Laser 1265 

Adsorption Spectroscopy [172]. These create one-time estimates of CH4 emissions, and are 1266 

difficult to replicate because of high labor requirements and changes in particular 1267 

measurement topographies because different wind conditions require changes in the locations 1268 

of the transects [135]. The modeling approach was developed to measure gas releases over 1269 

flat ground, and so has been modified to work on landfill settings that often have steep 1270 

slopes; often these adjusted modeling results did not meet QA/QC expectations [172]. 1271 

However, by creating an average CH4 concentration over a large area, variability associated 1272 

with point measurements can be ignored, and all emissions from an area can be accounted for 1273 

[169], and using multiple beam paths to generate data makes the measurements more robust 1274 

[174]. The availability of FTIR equipment in many technical laboratories makes it attractive 1275 

and it has been used in a number of instances to generate emissions data (e.g., [165] [167] 1276 

[175]); it has also been identified as a good means of monitoring large but distinct areas at a 1277 

site, which can be differentiated if the wind is in the right direction [170]. As suggested by 1278 

the mass balance label, two measurement sets are created: one for upgradient conditions, and 1279 

one for the site. Upgradient gas amounts are subtracted to generate net emission values 1280 

(which can also account for consumption of atmospheric CH4 by landfill soils) [172]. To 1281 

address variability of FTIR measurements at a site in Canada, a multivariate ANOVA was 1282 

used to generate a statistical model incorporating temperature, barometric pressure, and 1283 

precipitation effects to interpolate releases when measurements were not being made [175]. 1284 

One set of emissions data, for US landfills with intermediate cover (not considered to limit 1285 

emissions much), ranged from 4-140 g m-2 d-1, with a maximum reading of 210 g m-2 d-1286 

1[172], the equivalent of 60 µg m-2 s-1 to 1.5 mg m-2 s-1 , with the maximum = 2.2 mg m-2 s-1. 1287 

Capped landfills were at least an order of magnitude less than the lowest value for 1288 

intermediate cover, and as much as three orders of magnitude less [172]. 1289 

Tracer methods for whole landfill gas emission measurements have been developed. 1290 

Inert tracers, most often SF6 (but sometimes N2O and/or CO [170]) are released across the 1291 

landfill at known rates. At an appropriate distance from the landfill (determined by air 1292 

modeling) where the tracer should be well-mixed, samples are taken. The ratio of LFG 1293 

constituents to the tracer indicates the release rate of LFG. General topography should be flat 1294 

near the landfill, weather is an important variable, other sources of LFG constituents 1295 

(feedlots, sewage treatment plants, etc.) can interfere with single source determinations, and 1296 

the LFG release rate often needs to be high to ensure detectable amounts are measured 1297 

downgradient [173] [101] [170] [135].  1298 
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Spokas et al. [101] reported good agreements (r2 = 0.81) between tracer and closed 1299 

chamber sampling; Heroux et al. [175] reported better agreement between FTIR and closed 1300 

chamber sampling (r2 = 0.91). There was good correspondence (±10%) between FTIR and 1301 

closed chamber sampling in one sampling instance in Taiwan, but in a second sampling 1302 

effort, atmospheric concentrations measured by FTIR were higher than closed chamber data, 1303 

and varied directly with organic carbon content in the samples [167]. 1304 

Eddy covariance has also been used to measure fluxes from landfills. Measurements 1305 

are made of gas concentrations at a certain distance above the landfill, and using theories 1306 

regarding turbulent mixing, are compared to wind speeds over a set time period (30 to 60 1307 

min). This method generates release estimates integrated over an upwind distance equal to 10 1308 

times the height of the instrumentation, therefore creating a large areal footprint for the flux, 1309 

which is useful at a landfill [135]. 1310 

Eddy covariance was used to continuously monitor CO2 and CH4 and emissions at a 1311 

capped but vented Nebraska landfill for more than 3 years. The ratio of CO2 to CH4 was 1312 

significantly greater in summer than in winter, suggesting greater activity by soil 1313 

methanotropes in summer, and emissions were higher in winter than summer. Increasing 1314 

barometric pressure (for instance, a passing front) could suppress CH4 emissions within 1315 

minutes, although when pressure changes were averaged out over longer periods of time, 1316 

emissions were stable, attributed to the landfill maintaining near constant internal 1317 

temperatures. There was some uncertainty over whether barometric or wind direction changes 1318 

was the primary driver of emission variance, but a spectral analysis of the data sets suggested  1319 

a monitoring period of at least 10 days would be required to capture 90% of the emission data 1320 

variance. It appears that "soil pumping" is the process driving the changes in releases (which 1321 

is primarily but not entirely a phenomenon caused by changes in atmospheric pressures) 1322 

[135]. 1323 

Remote sensing (aircraft or elevated towers) can be used to measure atmospheric CH4 1324 

and determine regional variations. The variations can then be attributed to sources, including 1325 

landfills. These techniques can support large-scale screening projects, and have been used to 1326 

refine considerations regarding major contributors to CH4 emissions [176].  1327 

A modeling estimation technique has been developed for the US, where the regulatory 1328 

requirement to measure ambient air for NMOCs quarterly generates repeated, robust data 1329 

sets. Crosswind and downwind variations in concentrations are analyzed using standard gas 1330 

dispersion equations. The resulting NMOC data are then related to CH4 emissions. The 1331 
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technique also accounts for spatial and temporal variability in emissions, and compared well 1332 

to concurrent FTIR surveys at a Florida landfill [177]. 1333 

Sometimes very simple techniques can be used to survey landfills. PID-FID meters 1334 

and hand-held methane gas monitors can be used to quickly assess potential point sources, 1335 

and PID-FID meters have been used along transects to create emission estimates. Often, 1336 

careful observations may suffice, as landfill gas often smells bad, and major release points 1337 

can be identified by smelling them [176]. 1338 

  1339 
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5. Chemistry of methane generation 1340 

5.1 Landfill gas (LFG) 1341 

Open dumping has been practiced by civilizations for millennia, using the principle of 1342 

“out of sight, out of mind”. Wastes in open dumps are often burned to control odors and 1343 

reduce vectors, or perhaps catch on fire accidentally. Wastes are not inspected or otherwise 1344 

controlled. They are not compacted or placed using any engineering concepts. Managed 1345 

dumps are somewhat more organized: wastes may be inspected, dumping areas identified, 1346 

stormwater management and basic cover materials provided [163]. The first sanitary landfill 1347 

(a fill engineered to control the progression of filling, and using cover  materials to reduce 1348 

waste exposure to the environment) is thought to have been in Britain, in 1916 [178]. In the 1349 

twenty-first Century, low income countries typically have “low technology sites,” with open 1350 

dumping, middle income countries have some landfills with controlled filling and 1351 

environmental controls (managed dumps), and even some sanitary landfills, and high income 1352 

countries exclusively use sanitary landfills with extensive environmental control systems 1353 

[106].  1354 

Landfills (and dumps) do not have aeration systems and receive a loading that 1355 

contains a great deal of organic matter. Near the surface, organics are oxidized aerobically 1356 

[98]. However, slightly below the surface of the landfill air circulation from the atmosphere is 1357 

minimized, and anaerobic digestion of organic material occurs, which rapidly becomes 1358 

dominated by methanogenesis [107]. Wastes are typically quickly buried at the working face 1359 

of a sanitary landfill, minimizing exposure to aerobic conditions. Once methanogenetic 1360 

conditions exist, the process has a positive feedback, since the production of CH4 and CO2 as 1361 

microbial metabolic waste gases makes the landfill a net source of gas to the atmosphere and 1362 

surrounding subsurface, making infiltration of atmospheric gases into the waste mass more 1363 

difficult. LFG migrates primarily by a combined mechanism of diffusion and convection; 1364 

convection results from pressure gradients induced within the fill by differential outgassing 1365 

from microbes, mediated by differences in pressure between the fill and the surrounding 1366 

atmosphere. Typically, a dry, uncapped landfill will be in equilibrium with the atmosphere; 1367 

however, a landfill with a saturated surface will not, although elevated pressures will develop 1368 

in phase with changes in atmospheric pressures [107]. There tends to be more gas release 1369 

from landfills at low atmospheric pressure times, therefore, and the differences can be sharp 1370 

[135]. Diffusion exists because of unequal concentrations of gas, caused by differences in 1371 

generation rates along with subsequent advection patterns [179]. Landfill gas, which is 1372 

composed of approximately equal parts CH4 (0.656 kg m-3, lighter than air) and CO2 (1.977 1373 



62 

kg m-3, denser than air), is approximately the same density as the atmosphere (1.225 kg m-3). 1374 

Therefore, since it has approximately neutral buoyancy, it will migrate along paths of greatest 1375 

conductivity: sideways or downwards through the subsurface or upwards through the fill. At 1376 

closed landfills with no or incomplete liner systems, putting an impermeable cap on the fill 1377 

can cause all gas migration to be forced laterally, increasing off-site, subsurface migration 1378 

[179]. Gas collection systems, however, appear to minimize if not eliminate lateral migration 1379 

[101]. 1380 

The development of gas production in a fill has been classically defined as having five 1381 

stages [97] (Figure 4). Modern landfills (with effective liners and impermeable caps) have not 1382 

been operated long enough to determine with certainty when gas production will cease. 1383 

Sanitary landfills with less effective liners and cap systems appear to generate gas at high 1384 

levels for approximately 20 years after being capped, and continue to produce gas for at least 1385 

50 years [24], although descriptions of degradation within fills vary widely, ranging from 3-1386 

10% [129], up to 50% [180] to “most” [181] through 20 yrs. Complete consumption of 1387 

organic material in a sanitary landfill may take centuries or millennia, depending on cap 1388 

effectiveness and the time to eventual cap and liner failure [182]. However, in the short term 1389 

atmospheric gases (80% N2, 20% O2) are replaced within the fill by increasing amounts of 1390 

CO2 as aerobic respiration consumes organic matter; there is a brief time of H2 production; 1391 

methanotropes consume produced H2 and replace it with increasing amounts of CH4. 1392 

Methane slowly grows so that it has slightly greater concentrations than CO2 (see below) as 1393 

methanogenesis dominates the degradation of organic materials, although some descriptions 1394 

find their concentrations to be about equal. Eventually, methanogenesis will cease and the fill 1395 

will aerate again. Some models suggest that if the fill dries out prior to consumption of all 1396 

labile carbon, eventual failure of the cap and liner systems will re-initiate the sequence 1397 

described in Figure 5, which may then continue until all consumable organic matter that 1398 

remains in the fill has been depleted [182].   1399 
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Figure 5. Gas composition with a landfill; the five delineated stages are not of equal 1403 

duration (adapted from ref. 97) 1404 
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The degradation of organic matter has classically been described using reduction-1406 

oxidation (redox) chemistry [183]. Table 11 shows the chemistry of the reactions on 1407 

generalized organic matter. This description is drawn from marine sediments, where the 1408 

zonation is often well-defined. In landfills, the zonations are indistinct, and it may be that 1409 

micro-environments form where one process dominates over the others due to availability of 1410 

electron acceptors [184] [185], which act as limits to methanogenesis. Aerobic decomposition 1411 

of matter releases an order of magnitude more energy than methanogenesis, and, except for 1412 

sulfate reducers, other anaerobic oxidation pathways produce much more energy, too [36]. 1413 

1414 
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Table 11. Redox description of the degradation of organic matter (adapted from ref. 183) 1415 

 1416 

 

1. Aerobic oxidation of organic material 

(CH2O)x(NH3)y(H3PO4)z + (x+2y)O2 + (y)HCO3
-  (y)NO3

- + (z)H3PO4 + 

(y)H2O + (x+y)H2CO3   

ΔG0 = -3190 kJ mol-1 (glucose)  (Eq. 8) 

 

2. Manganese reduction  

(CH2O)x(NH3)y(H3PO4)z + (2x+1.5y)MnO2 + (3x+3y)H2CO3  (2x+1.5y)Mn+2 

+ (.5y)N2 + (z)H3PO4 + (2x+3y)H2O + (4x+3y)HCO3
-    

ΔG0 = -2920 - -3090  kJ mol-1 (glucose)  (Eq. 9) 

 

3. Nitrate reduction   (3a. oxidation to N2) 

(CH2O)x(NH3)y(H3PO4)z + (.8x+.6y)NO3
- + (.6y)H2CO3  (.2x)CO2 + 

(.4x+.3y)N2 + (z)H3PO4 + (.6x+1.3y)H2O + (.8x+.6y)HCO3
-     

ΔG0 = -3030 kJ mol-1 (glucose)  (Eq. 10a) 

                                   (3b. org. N released as NH4
+) 

(CH2O)x(NH3)y(H3PO4)z + (.8x)NO3
- + (y)H2CO3  (.2x)CO2 + .4(x)N2 + 

(y)NH4
+ + (z)H3PO4 + (.6x)H2O + (.8x+y)HCO3

-    

ΔG0 = - 2750 kJ mol-1 (glucose)  (Eq. 10b) 

 

4.  Iron reduction 

(CH2O)x(NH3)y(H3PO4)z + (2x)Fe2O3 + (7x+y)H2CO3  (4x)Fe+2 + (y)NH4
+ + 

(z)H3PO4 + (4x)H2O + (8x+y)HCO3
-    

ΔG0 = -1330 - -1410 kJ mol-1 (glucose)  (Eq. 11) 

 

5.   Sulfate reduction 

(CH2O)x(NH3)y(H3PO4)z + (.5x)SO4
-2 + (y)H2CO3  (y)NH4

+ + (.5x)H2S + 

(z)H3PO4 + (x+y)HCO3
-   

ΔG0 = -380 kJ mol-1 (glucose)  (Eq. 12) 

 

6.  Disproportionation (Methanogenesis) 

(CH2O)x(NH3)y(H3PO4)z + (y)H2CO3  (.5x)CO2 + (.5x)CH4 + (y)NH4
+ + 

(z)H3PO4 + (y)HCO3
-    

ΔG0 = -350 kJ mol-1 (glucose) (Eq. 13) 

 1417 

  1418 
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Phase I (Aerobic) is the initial adjustment phase, also known as the aerobic phase 1419 

because of its high oxygen concentration. Carbohydrates, hydrogen sulfide, and ammonium 1420 

are oxidized and volatile fatty acids (VFA) are gradually produced [97]. The main reaction 1421 

can be described as Equation 8. The duration of aerobic decomposition is under dispute, with 1422 

the standard model suggesting buried wastes remain aerobic for a few hours to one week 1423 

[97]. Those who believe landfills release more CH4 than is generally said to be the case 1424 

ascribe to the shortest time period for Phase I. Some who believe landfills are more benign 1425 

describe longer aerobic periods, which can be months long. Variations from site to site may 1426 

account for some of these differences in opinion. Staley et al. [186] suggested that uneven 1427 

distribution of moisture, as a strong control on microbial activity is a determinant of whether 1428 

or not degradation proceeds rapidly or not. 1429 

Phase II (Anaerobic but Non-Methanogenic) is a transition phase. Once oxygen is 1430 

generally less than 5-10% (v/v), facultative and anaerobic bacteria are activated in places in 1431 

the fill [97]. Under anaerobic condition, nitrate and sulfate (as well as iron and manganese in 1432 

saturated zones) become terminal electron acceptors (Eq, 9, 10a, 10b, 11, and 12). The 1433 

reduction of nitrate produces ammonia and the reduction of sulfate produces hydrogen 1434 

sulfide. This phase may last six months, although some reports document 90% CO2 gas 1435 

concentrations after 40 days [171]. 1436 

 Phase III (Unsteady Anaerobic Methanogenic) is an acid formation phase. Anaerobic 1437 

hydrolytic microorganisms increase rapidly, resulting in the generation of volatile organic 1438 

acids (VOA) and H2. Acidogenic bacteria grow in numbers, consuming the VOA. Bacterial 1439 

growth reduces the availability of nutrients. Carbon dioxide is predominant waste gas 1440 

released by organisms within the fill. The accumulation of VOA and CO2 tends to reduce pH 1441 

in the fill; values as low as five have been reported. Peak production of H2 occurs in this 1442 

phase, and methanogenesis begins [97], despite reports from other environments such as peat 1443 

that nlow pH values can entirely inhibit methanogenesis [187]. This phase lasts months to 1444 

several years; two years is the most widely used estimate (c.f., [24]), but values of less than 1 1445 

yr are also widely cited [171]. Those believing landfills rapidly produce CH4 will assign 1446 

much shorter time periods to the non-methanogenic phases.  1447 

Cellulose and hemicellulose are believed to be the predominant degradable portions 1448 

of wastes [188]; lignin has been found to be much more recalcitrant. Concentrations of 1449 

cellulose and hemicellulose were called “reasonably consistent” in samples of fresh wastes in 1450 

North Carolina, and except for food wastes, VFA were absent from the wastes as they were 1451 

landfilled. Different fractions of wastes have different proportions of the key components, 1452 
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with leaves enriched in lignin and paper enriched in cellulose [186]). In waste samples, fresh 1453 

waste can have a 4:1 ratio of cellulose to lignin, whereas older degraded samples tend to have 1454 

a ratio of less than 1. At one California landfill, sample ratios for older wastes were all less 1455 

than 0.1. The implications are that cellulose degrades in landfills, but lignin does not. There is 1456 

additional evidence that lignin actually impedes cellulose degradation [188]. Note a study in 1457 

the UK found that the age of waste (from 1 year to several decades) did not have an effect on 1458 

CH4 emissions -- which is not exactly the same as CH4 generation rates [169]. 1459 

Microbes causing degradation do not appear to be transported much within the fill, 1460 

due to uncertain and irregular water flows associated with low hydraulic conductivity in 1461 

much waste, and the development of preferential flow paths, and so are assumed to be present 1462 

but inactive in the delivered wastes [186]. Water flows are also likely to be the best means to 1463 

transport nutrients and organic substrates [189], so wastes outside of flow paths or isolated 1464 

from other wastes inside plastic bags are unlikely to degrade quickly, if at all. Since collected 1465 

wastes are mostly aerobic, the microbial communities must either be facultative or able to 1466 

survive long exposures to oxic conditions. However, the microbial community structure of 1467 

fresh waste, which is strongly influenced by food waste species composition, is very different 1468 

from that of degraded waste [186]. Initiation of methanogenesis, as tracked by mesocosm 1469 

experiments, requires the presence of VOA, and occurs at relatively low pH (as low as 5.5). 1470 

VOA are produced when hydrolytic bacteria degrade cellulose and hemicellulose faster than 1471 

acetogens and methanogens can convert the VOA to CH4 [188]. Degradation of the cellulose 1472 

appears to be accomplished by a varied set of thermophilic, motile bacteria, comprising at 1473 

least four distinct isolates in samples from an English landfill [190]. Methanosarcina barkeri 1474 

appeared to be the dominant methanogenic organism in the first stage of methanogenesis. As 1475 

CH4 concentrations increase, higher pH values were found in saturated areas of mesocosms, 1476 

creating an advancing front of methanogenesis [187]. The Archaea methanogens are able to 1477 

outcompete organisms found in aerobic communities, due to better fit with environmental 1478 

conditions. The dominant methanogens are Methanomicrobiales and Methanosarcinales. 1479 

Organisms found in leachate samples, however, are not similar to those found in waste 1480 

samples [186]; in fact, samples from a Taiwan landfill leachate found that although these 1481 

same two lineages were the dominant methanogens, they represented only 2% of the total 1482 

community (as measured by oligonucleotide probes, which represent population numbers 1483 

only approximately) [191]. 1484 

Phase IV (Steady Anaerobic Methanogenic) is the methane fermentation phase. 1485 

During this phase, intermediate VOA are consumed by methanogenic bacteria and converted 1486 
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into CH4 and CO2 [97], shown as Equation 13. In addition, CO2 can be consumed if H2 is 1487 

present, producing CH4 and water (Equation 14). Since some of the CO2 in turn is consumed 1488 

to produce more CH4, most landfills have LFG that is 50-60% CH4 and 40-50% CO2 (v/v). 1489 

Sulfate continues to be reduced, as well. The fill pH rises due to the bicarbonate buffering 1490 

system; since methanogens need higher pHs to thrive, this is a positive feedback resulting in 1491 

relatively more CH4 production. The duration of this phase in unknown, but appears to be at 1492 

least 10 years, and probably is at least 50 years [24], and may be more. Availability of water 1493 

within the fill is an essential consideration. Note that Themelis and Ulloa [98] believe data 1494 

show 50% of all labile organic matter is turned into CH4 within one year.  1495 

 1496 

CO2 + H2 → CH4 + 2H2O                                                                                  (Eq. 14) 1497 

 1498 

Phase V represents the stabilization of the waste mass, when it no longer degrades. 1499 

When LFG generation ceases, atmospheric gases will permeate back into the landfill, and 1500 

oxidized chemistry will re-appear. 1501 

The overall conversion from organic compounds to methane and carbon dioxide may 1502 

stoichiometrically be expressed as Buswell formula (Equation 15) [192]: 1503 

 1504 

CnHaOb + (n - a/4 - b/2)H2O →(n/2 - a/8 + b/4)CO2 + (n/2 + a/8 - b/4)CH4      (Eq. 15) 1505 

 1506 

All-in-all, LFG production is sensitive to moisture, temperature, oxygen, hydrogen, 1507 

pH/alkalinity, sulfate, nutrients, and various inhibitors [97] [193], although temperature may 1508 

not be important [135]. Moisture is key; maximum gas production appears to occur at 60-1509 

80% wet weight moisture content. Dry climate landfills experience spikes in gas production 1510 

after rainfalls, but in temperate climates heavy rainfalls appear to temporarily inhibit gas 1511 

production, possibly by filling preferential flow pathways [171]. Temperature has also been 1512 

identified as a controlling variable. One consideration for waste degradation was Equation 1513 

16: 1514 

              hd = 0.014T + 0.28                                                                                            (Eq. 16) 1515 

 1516 

where 1517 

hd = fraction of  biodegradable wastes eventually degraded 1518 
T = temperature of waste mass (ºC) 1519 
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Under mesophilic (~35 ºC) conditions, the efficiency is expected to reach ~75% [189]. The 1520 

state of the wastes, including differing origins (industrial, commercial, residential) and 1521 

whether or not they are shredded will affect degradation [189]; recent preferences in the US 1522 

for tightly baled and wrapped bundles of wastes that enhance transportability is likely to 1523 

suppress degradation, as well. 1524 

Barlaz [186] estimated gas generation (based on laboratory landfill reactors, with 1525 

shredded biomass and constant water inputs) at 0.153 g CH4 g biomass-1. USEPA [24] has 1526 

modeled a 21% reduction in decomposable material being landfilled (1990-2012), partly due 1527 

to recycling and partly due to changes in materials use; USEPA has modeled a related 30% 1528 

decrease in CH4 generation at landfills. Other developed nations are probably experiencing 1529 

similar trends; waste disposal trends in developing nations are probably different, as growing 1530 

affluence is likely to increase paper and overall discards [106]. 1531 

USEPA modeling [24] assigns a 40% reduction factor for dumps compared to sanitary 1532 

landfills. Most nations under the IPCC protocols appear not to count dumps or informal 1533 

disposal sites in CH4 generation inventories. 1534 

It is generally understood that most carbon placed in landfills does not degrade [24], 1535 

although this is not universally agreed to. Scheutz et al. [176] asserted LFG is generated until 1536 

"the majority" of wastes has been degraded, which was said could take several decades. But, 1537 

tremendous odors occurred when 2000 year old Roman waste were uncovered [194], 1538 

indicating degradation may not have completed over a short time period. Rathje [131] was 1539 

able to date landfilled wastes in the US by reading newspapers (often 30-40 years old), and 1540 

reported finding intact items such as bananas and hot dogs 30 years after burial. Rathje’s 1541 

opinion was that yard waste and food degraded in many landfills, but most other organic 1542 

matter did not. Landfill settlement rates are often less than expected. Maximum settling of 1543 

landfill surfaces may approach 40%, but only about 40% of total settling (15% of the original 1544 

thickness) is expected to be from waste decomposition. The remainder of the settling is due to 1545 

waste consolidation and mechanical creep [195]. Sanitary landfills can more than 100 m thick 1546 

but rarely settle more than 10-20 m. This failure for landfills to "disappear" supports the 1547 

concept that most degradable materials are preserved in sanitary landfills.  1548 

Experimental tests show waste degrades. The Barlaz laboratory, working with 1549 

mesocosm landfill analogs for several decades, has shown ground, moist organic material 1550 

will degrade under landfill conditions [196]. Food was shown degrade rapidly and readily 1551 

although CH4 inhibition occurred with a subset of samples, apparently due to high VOA 1552 

[197]; grass samples nearly all degraded, and over half of corrugated cardboard and office 1553 
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paper was degraded to CH4, so that about 50% of all degradable MSW was gasified [196]. 1554 

But not all constituents degrade even under these optimal anaerobic conditions [198]. In 1555 

landfills, with plastic wraps, differential and uneven exposure to water, and other factors, it is 1556 

clear that most degradable compounds do not evolve into CH4 in sanitary landfills [188], at 1557 

least partly due to isolation from water flows carrying nutrients [189], so that, in a sense, 1558 

landfills constitute a carbon sequestration vehicle for time periods of decades to centuries 1559 

[198]. It has been argued eventually the organic matter will decay, although it may take 1560 

millennia [182]. Operating a landfill as a bioreactor to increase degradation rates 1561 

(recirculating and potentially supplementing leachate to keep wastes wetter) can 1562 

approximately double the decay constant, but does not ensure appreciably greater degradation 1563 

of the landfilled material; it may just shift decay earlier in the life of the landfill [199].  1564 

Modeling landfill behavior has been attempted, but the complexity of the process 1565 

means these simulations have difficulty replicating actual observed outputs at a site. There 1566 

are physical, chemical, and biological reactions occurring in heterogeneous liquid, gas, and 1567 

solid phases. Some attempts to capture this very complicated environment include Wall and 1568 

Zeiss [198], Zacharof and Butler [201], Hanson et al. [202], Lobo et al. [203], McDougal 1569 

[204], Gourc et al. [205], and Robeck et al. [206]. 1570 

5.2 Anaerobic Digestion (AD) 1571 

Anaerobic digestion (AD) is similar to the processes that occur from Phase II to Phase 1572 

IV in landfills. A consortium of microbes working in concert degrade complex organic 1573 

molecules to CH4 (and either CO2 or water) [94]. There are a number of distinct stages to 1574 

methanogenesis. In the first, the complex and solid organic matter is hydrolyzed into soluble 1575 

molecules. In the second, these molecules are converted by acid forming bacteria to VFA, 1576 

CO2, and H2. In the last stage, CH4 is formed by methanogenic bacteria, either by breaking 1577 

down the principal acids, or by reducing CO2.  The entirety of the process includes hydrolysis 1578 

of biopolymers, fermentation of amino acids and sugars, anaerobic oxidation of long chain 1579 

fatty acids and alcohols, anaerobic oxidation of intermediary products such as volatile acids 1580 

(with the exception of acetate), conversion of acetate to CH4, and conversion of H2 to CH4 1581 

[207]. One way of considering AD is to classify it into three end stage reactions (Equations 1582 

17-18): 1583 

(1) Acetotrophic (degradation of acids) 1584 

4 CH3COOH →4 CO2 + 4 CH4                                                                          (Eq. 16) 1585 

(2) Hydrogenotrophic (using H2 to reduce CO2): 1586 

(3) CO2 + 4 H2 → CH4 + H2O      (Eq. 17) 1587 
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(4) Methylotrophic (compounds containing a methyl group; methanol used as an 1588 

example) [94]: 1589 

4 CH3OH + 6 H2 →3 CH4 + 2 H2O                                                         (Eq. 18)  1590 

 1591 

The Buswell formula (Eq. 15) is also applied to calculate the maximum amount of 1592 

methane may be generated during AD process. Because excess produced H2 is available to 1593 

reduce CO2, the “theoretical” 50:50 ratio of CH4 to CO2 is rarely observed; CH4 content in 1594 

produced biogas is usually greater than CO2 and ranges from 40-70% [94]. Anaerobic 1595 

digestion is not very efficient, however, and typically only 20-30% of infeed organic matter is 1596 

mineralized, because of the large amount of lignin in typical AD feedstocks [208]. Lignin 1597 

itself is recalcitrant, and also inhibits the digestion of more degradable cellulose compounds 1598 

[188]. 1599 

Various inhibitory or toxic substances are the primary cause of AD reactor upset; 1600 

many are common elements of MSW and other wastes. The most common inhibitors include 1601 

ammonia, sulfide, light metal ions, heavy metals, and organics (chlorophenols, halogenated 1602 

aliphatics, N-substituted aromatics, long chain fatty acids, and lignin-related compounds); 1603 

ammonia is the most common cause of problems [209] [210]. Unlike a landfill, where wastes 1604 

are rarely completely saturated, an AD is saturated, and so the entire process can be upset 1605 

whereas inhibition of methanogenesis in a landfill is likely to remain relatively isolated. 1606 

Because AD occurs in a microorganism ecosystem that can vary in composition, and wastes 1607 

are rarely similar, and process methods and conditions vary, reports on AD inhibition due to 1608 

specific toxicants are not consistent [210]. Inhibition can also occur when essential nutrients 1609 

are not present, or are not present in ratios that support microbial growth. Carbon and 1610 

nitrogen are considered the essential nutrients, and optimal growth is achieved under 1611 

differing C/N ratio, depending on process feedstocks [94]. Competition between sulfur 1612 

reducing bacteria and methanogens can also occur; this can result in biogas contamination 1613 

with H2S [210]; typical H2S concentrations from manures and sewage sludges are 200-1500 1614 

ppm, with some reports of concentrations as much as 10,000 ppm [88]. 1615 

Anaerobic digesters are continuous feed or batch feed, “wet” (low solids content, 1616 

generally <15%) or “dry” (higher solids content, generally 10-20% although sometimes as 1617 

high as 40%), one stage or two stage processes, and mesophilic (~35 °C) or thermophilic 1618 

(~55 °C). A special case is the “anaerobic filter,” where fermentable wastewaters flow 1619 

upwards past solid media, where the microbes are intended to be attached to prevent washout 1620 

(this is a short retention, high flow rate system). Batch feeds enable sequential completion of 1621 
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the multi-step digestion process, and have greater gas production, but require storage of 1622 

feedstocks. Microbial populations can also become unstable. Wet processors allow for 1623 

homogenization of the slurry. This can present process issues with some feedstocks, as when 1624 

scum layers form or inhibitory compounds are produced. Dry systems allow for removal of 1625 

scums by promoting segregation of different elements in the vessel, and can prevent total 1626 

system shocks and process upsets, limiting effects to smaller areas of the vessel – and the 1627 

process may be able to mitigate the production of process toxins with time. However, in dry 1628 

systems solids may discharge prior to complete treatment, and larger solid materials tend to 1629 

be more recalcitrant. Plug flows may slow or even prevent inoculation of input wastes. 1630 

Although loadings are greater to dry systems, retention times tend to be longer. Two stage 1631 

(sequential vessel) systems typically separate acidogenetic from methanogenetic phases, 1632 

minimizing opportunities for process upsets, but other elements of the process can be 1633 

separated depending on system needs. Such an installation obviously requires shifting 1634 

materials from vessel to vessel. Thermophilic systems require heat additions, and may 1635 

promote production of inhibitory ammonia, although the breakdown of matter may be faster; 1636 

economics dictates that most sewage sludge digestion is mesophilic. In Europe, most installed 1637 

capacity is dry, single stage digesters, with various configurations of the other factors [94] 1638 

[93] [208]. 1639 

Various combinations of substrates are recommended; the mixtures depend on what is 1640 

considered to be the primary waste to be managed, and what is the additional material or 1641 

materials to be added. Feedstocks for AD include sewage sludges (”biosolids”), animal 1642 

wastes, crop residues, aquatic and marine biomass, MSW, food wastes, and various industrial 1643 

effluents (wood and paper pulp, food processing wastes, even textile effluents and 1644 

petrochemical plant residues) [94] [93] [210]. More AD plants are in use in the EU, partly 1645 

because of the EU Landfill Directive requiring landfilled organic matter to be pre-treated (see 1646 

Section 7), and partly because of tariffs and generally higher electricity prices which make 1647 

biogas-to-electricity plants more profitable [94]. The solid digestate from AD is often 1648 

composted, and used as a soil amendment [96]. 1649 

In Asia (especially India and China), there has been a history of small, household- to 1650 

neighborhood-sized AD plants [211]. Expanded use of these plants began in the 1970s in 1651 

China when 7 million plants were constructed. In the 2000s, another 20 million plants were 1652 

installed. In India, over 7 million plants have been installed or are planned for. They manage 1653 

animal manures primarily, but also can be connected so as to treat domestic wastewater and 1654 

other organic wastes. Although decentralized production of biogas, especially to replace the 1655 
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use of biomass for cooking, but also for household heating and illumination, and even 1656 

electricity generation, is very attractive in rural areas otherwise devoid of modern 1657 

infrastructure, the technology has not flourished. Owners and presumed operators of the 1658 

plants were not adequately trained to run these plants, nor were any mechanisms for 1659 

maintenance (spare parts, etc.) ever provided. Costs for plants are enormous compared to 1660 

household cash incomes in rural, undeveloped areas, and so subsidies are a necessity for 1661 

construction, and financing for system maintenance, even if the know-how had been 1662 

transferred, is also difficult to accommodate. At least 50% of installed plants from the first 1663 

wave of China construction are inoperable, and data from other Asia locales are not very 1664 

different (unless only recently constructed plants are included in the assessments) [212]. 1665 

5.3 Methanotropes in Cover Soils 1666 

Microbes in a variety of environments oxidize CH4 to CO2. There is great such 1667 

activity in deep-sea sediments (70 Tg CH4 yr-1), where methane oxidizing organisms appear 1668 

to be symbiotic with sulfate reducing bacteria. The marine sediment oxidizers appear to be 1669 

Archaea, with strong genetic links to methanogens [55]. This metabolic activity appears to be 1670 

close to the lower limit of beneficial energy recovery [213]; this low level of activity may be 1671 

supported because some methanotropes may link to manganese and iron reducers which are 1672 

energetically more favorable [214]. In terrestrial environments, methane oxidizers occur 1673 

primarily in upland, forested settings and take up CH4 from the atmosphere, apparently 1674 

without any microbial symbiosis. They oxidize considerable amounts of atmospheric CH4: 30 1675 

Tg yr-1 (2-3% of released CH4) [12], which, given the smaller terrestrial area compared to 1676 

oceanic areas, indicates a similar overall activity level. Terrestrial methane oxidizers are 1677 

inhibited by ammonium, which is present in fertilizers, so applications of fertilizers decrease 1678 

CH4 removals, a growing concern with the increase in worldwide agriculture [12]. 1679 

Uptake at landfills appears to be different in certain ways. Organisms in cover soils 1680 

consume CH4 in much higher CH4 concentration environments [135]. These organisms 1681 

primarily oxidize CH4 to CO2 to support metabolism and use some of the CH4 for 1682 

assimilation, as well. They appear to primarily be obligate aerobes. Differences among 1683 

landfill specific organism groups include the ability to co-metabolize other non-CH4 organic 1684 

compounds, CH4 consumption rates, O2 requirements, the CH4 concentration that triggers 1685 

oxidation, temperature and moisture change resiliency, and the release of various 1686 

extracellular chemicals (at least partially to address internal production of formaldehyde) 1687 

[215]. These extracellular chemicals can clog soil pores and prevent organisms from 1688 

accessing gas [189]. In general, methanotropes transform more CH4 in summer than winter 1689 
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[135]. Although they represent a variety of organisms with different abilities and traits (for 1690 

instance, not all oxidize CH4, and some additionally transform NMOCs in landfill gas), this 1691 

set of soil organisms that are involved in transforming CH4 and reducing releases to the 1692 

atmosphere are lumped together as "methanotropes" [215]. 1693 

Oxidation of CH4 requires methane mono-oxygenases [176], and follows the 1694 

following pathway: CH4 to methanol to formaldehyde to formic acid to CO2 [68]. There are 1695 

two ways to assimilate CH4. Type I methanotropes (eight genera in Methylococcaceae) 1696 

assimilate formaldehyde via the ribulose monophosphate pathway, but Type II methanotropes 1697 

(four genera in Methylocystacecae) assimilate formaldehyde through the serine pathway 1698 

[189]. Approximately 50% of CH4 affected by these microbes is assimilated, and the 1699 

remainder is oxidized, providing metabolic energy [176]. Methanotropes are very similar to 1700 

ammonia-oxidizing chemoautotrophs [68]. In cover soils, some oxidation of CH4 may 1701 

proceed chemically, as the atmosphere mixes diffusively and through soil pumping with 1702 

landfill gases in the top soil layers of the landfill [216]. Then, OH· reactions, just as in the 1703 

open atmosphere, will oxidize CH4 to CO2, as discussed in Section 1. 1704 

Coarse sandy soils support substantial CH4 oxidation [217], although higher carbon 1705 

content is preferential: the salient feature of sands is its good structure, so silty or sandy 1706 

loams are probably the best soil types overall for methanotropes. Low and high moisture 1707 

levels impede gas production [189]. The presence of plants appears to enhance 1708 

methanotropism. This may be because many organisms establish symbiotic relationships with 1709 

rhizosomes, and also because the rhizosphere generally appears to be a favorable 1710 

environment for bacteria [189]. Additionally, it may be that methanotropism is generally N-1711 

limited [176], and root zones are often prime locations for nitrogen fixation. The 1712 

establishment of plants on a landfill surface enhances reduction of CH4 releases and 1713 

decreases associated soil concentrations; it may also be that decreases in soil CH4 1714 

concentrations enhance conditions to foster plant growth; in any case, older landfill sections 1715 

support more plants and have lower soil gas concentrations of CH4 [159]. Interruption of gas 1716 

supplies to the surface soils has a small impact on populations of methanotropes. 1717 

Methanotropism is detected in anoxic soils as well as oxygenated soil, suggesting at least 1718 

some of the community is facultative, although greatest consumption occurs in more aerated 1719 

environments [217], and, generally, O2 is necessary for methanotropes. Gas extraction 1720 

systems can increase the depth of methanotropism by drawing atmospheric gases deeper into 1721 

the fill than they might naturally diffuse to. Maximum CH4 oxidation rates by methanotropes 1722 

appear to be 250 g m-2 d-1 (2-3 mg m-2 s-1) [176]; most reports are for much lower oxidation 1723 
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rates [68]. At three French landfills, where gas migrated to the atmosphere (as opposed to 1724 

being entirely controlled by the gas collection system), between 4% and 50% of the fugitive 1725 

CH4 was consumed [101]; a landfill with specially prepared cover material oxidized 55% of 1726 

fugitive CH4 [218]. Some data suggest 80% reductions can be achieved [219] with at least 1727 

one experimental achievement of 90% reductions [220]. In addition to comparisons of 1728 

modeled gas generation to releases to the atmosphere as a means of determining 1729 

methanotropism, indirect measurement of CH4 consumption can be estimated using δ13C of 1730 

collected CH4 in flux chamber experiments. Methanotropes prefer C12, therefore increasing 1731 

the δ13C of gas as it passes from the landfill to the atmosphere, so changes in CH4 δ
13C 1732 

indicate methanotropism [101]. And, not only will methanotropes reduce CH4 releases at 1733 

landfills, they also degrade important NMOC such as aliphatic hydrocarbons (benzene and 1734 

toluene) and chlorinated solvents (trichloroethylene and 1,1,1-trichoroethane) [68] [216], 1735 

with significant reductions being measured in the field [218]. 1736 

Modeling this process is not simple. There are two transport media (gas and liquids), 1737 

and reactions are multi-component. In porous media, molecule-molecule reactions dominate, 1738 

and so diffusive processes are often more important than advective processes (which need to 1739 

account for tortuosity as well) [219]. However, it is also asserted that small pressure gradients 1740 

within the fill or very coarse soils can drive advection to be the dominant transport process. 1741 

At the edge of the fill, and where leachate seeps occur, bubbling (ebullition) mechanisms are 1742 

important [176]. Unequal density of the target gases affects considerations, as well. When 1743 

modeled, it appears that diffusion is the dominant transport mechanism within the active 1744 

methanotropic zone. Because the reactions reduce 2.5 moles to gas to 0.5 moles of gas, there 1745 

is a decrease in pressure which also energizes transport, although CH4 (a light gas) is 1746 

transformed to CO2 (a heavier gas). Moisture reduces reactions by slowing O2 diffusion into 1747 

the soils. The model did not show significant effects (over time periods of weeks) from 1748 

exudations that could clog pore spaces [219]. Models of methanotropism help elucidate 1749 

process controls, and there was fair agreement between a model and field measurements 1750 

made when argon gas was used as a tracer, which was interpreted as suggesting these models 1751 

may capture some of the natural dynamics, as well [176]. Methane generation models 1752 

typically apply a constant correction factor to account for methanotropism, most often 1753 

decreasing releases by 10%. 1754 

Biosystems (soils or other media that support methanotropes) have been proposed for 1755 

closed landfills where gas collection and management may not be feasible [218] [170]. 1756 

Unsuitable conditions for gas management include: startup phases; post-closure times when 1757 
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gas production rates dip; small sites; sites where waste composition issues make gas quality 1758 

insufficient (too little CH4) or inappropriate (too much contamination) for use; and, sites 1759 

where forced aeration is used to reduce labile carbon (so-called MBT sites, almost all in the 1760 

EU) [215]. They may be useful adjuncts to cover systems, as engineered controls like caps 1761 

have limited lifespans (perhaps only a few decades) [189]. At landfills with active gas 1762 

systems, augmenting soils to induce more oxidation of fugitive gases could reduce CH4 1763 

releases by tens to hundreds of Mg yr-1 [218]. 1764 

Biocovers are final caps composed of a gas permeability layer topped by a medium 1765 

designed to support methanotropes: typically compost. Biofilters are engineered media 1766 

designed to support methanotropes on packing materials. They are suitable for use over 1767 

landfill cover systems such as clay liners or geomembranes. Biofilters can be open beds with 1768 

passive gas feed to the organisms, or closed beds with active gas feed. Composted wood 1769 

chips can make good media. Biowindows are sections of uncapped fill in an otherwise 1770 

capped fill. They receive preferential gas flow, and have been used in Europe to remediate 1771 

old dumps. Biotarps are alternative daily or intermediate covers; the compost (or other media) 1772 

is a better support system for methanotropes and so improves gas reduction rates [215]. 1773 

Treated waste can also serve as a biosystem substrate, as shown by an experiment where 1774 

MBT residuals were used as a biocover that reduced 90% of produced gas from a waste 1775 

lysimeter [220].    1776 
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6. Methane utilization options 1777 

In the developed world, landfills with capacity > 1 MT yr-1 almost all beneficially use 1778 

produced biogas (as well as most sewage treatment plants > 100 ML d-1, and over 8,200 US 1779 

dairy and swine operations). Feasibility is a function of revenues versus expenses [221], 1780 

tempered by regulatory requirements and government support. In the US, LFG has been used 1781 

to produce electricity (LFGTE), fire industrial boilers, power dryers and kilns, and for 1782 

greenhouses, infrared heaters, leachate evaporation, glassblowing, potttery, blacksmithing, 1783 

hydroponics and aquaculture [222]. 1784 

6.1 Composition of LFG 1785 

The composition of LFG (Table 12) is primarily determined by waste components, 1786 

landfill age, and climatic conditions. Nearly all of LFG is CH4 and CO2; there are much 1787 

smaller concentrations of hydrogen sulfide (H2S) and ammonia. Usually, the gas is saturated 1788 

with water vapor, and typically contains dust particles, siloxanes, and part-per-billion 1789 

concentrations of various volatile organic compounds [223]. Landfill gas is not homogenous, 1790 

and the age of wastes and the depth of collection affect important constituents [173]. 1791 

  1792 
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Table 12. Typical LFG composition (adapted from [137]) 1793 

Constituent Composition (%, v/v, dry basis) Mean (%, v/v, dry basis) 

CH4 40-60 50 

CO2 25-50 42 

N2 0-15 7 

O2 0-4 1 

H2S 0-1.0 0.03 

H2 0-1 0.5 

NH3 0.01-1  

CO 0-1.0  

Trace gases 0.01-0.6  

 1794 

  1795 
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As many as 116 NMOC have been measured in LFG; concentrations have been 1796 

decreasing at US landfills, attributed in part to more aggressive segregation of hazardous 1797 

materials from the waste streams, and product substitutions by industry. Data from 1000 US 1798 

landfills suggested mean NMOC concentrations were less than 1000 ppm, with most regions 1799 

in the US reporting mean concentrations less than 500 ppm. Many of these compounds are 1800 

acutely or chronically toxic, constitute hazardous air pollutants or form them through 1801 

atmospheric reactions (especially ozone), and are odorous [173].  1802 

6.2 Gas collection systems 1803 

In order to collect gas at a landfill, a collection system must be installed. Typically, 1804 

for a system installed after the landfill has been operating, there are a series of vertical wells 1805 

drilled into the waste to just above the liner (or bottom of the waste, as the case may be). 1806 

Screening of the wells may be continuous, at discrete intervals, or only at one point (rarely 1807 

just at the bottom, as bottom screened wells may become flooded with leachate).. The wells 1808 

are fitted with valves to allow vacuum control. At the most modern sites, variable speed 1809 

pumps controlled by a central, computerized monitoring system can optimize collection from 1810 

individual wells or over sections of the piping network. A network of headers, often with 1811 

condensate traps to allow for collection of liquids created due to temperature change (LFG is 1812 

generally saturated, and landfills tend to be warmer than ambient temperatures, so that 1813 

moisture condenses as the gas cools), is used to transport gas to one or more central locations. 1814 

There, the gas is either treated and then used, or used as is. Installing a cap on the waste will 1815 

increase the capture rate, and reduce incorporation of ambient air [224] [137]. 1816 

A planned gas collection system can be installed as a landfill is built. In these cases, 1817 

horizontal pipes are generally laid into trenches at regular intervals as the landfill rises. The 1818 

pipes are extended out the side of the landfill. Flexible connections may be included to 1819 

account for deformation of the wastes through densification or settlement of the waste mass 1820 

[137]. 1821 

Typically, rigid plastic piping is used. Common configurations of the piping network 1822 

are radial collection systems (a central collection point) or using a main collection pipe 1823 

connected to each well; it is common to use either the radial pattern or the main collection 1824 

pipe systems in a sectorial factor, so that the systems are modular (enabling them to be 1825 

isolated for repairs, and allowing for expansion as the site grows). Blowers and compressors 1826 

are required to establish vacuum and to move gas. Regular monitoring of each well and 1827 

network of wells is important to tune gas production optimally, both to maximize 1828 

withdrawals from areas where gas production is best, and to ensure that not too much 1829 
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atmospheric gas is being captured, as well. When the landfill as a whole, or a particular 1830 

section ("cell" of the landfill is closed, fitting the cap material (geomembrane or clay, 1831 

usually) around gas wells is a complicating factor [137]. 1832 

High leachate levels and perched water in the fill cause gas extraction problems. 1833 

Clogging of pipes due to condensate pooling is also an issue. Internal fires play havoc with 1834 

gas systems. Corrosion of parts due to H2S oxidation causes part failure, as do abrasion due to 1835 

silicon and siloxanes. 1836 

Gas treatment facilities and processes are discussed below. 1837 

 1838 

6.3 Gas capture efficiency 1839 

There is some controversy regarding the effectiveness of gas control systems at 1840 

landfills.  One element is the rapidity with which organic matter is converted to CH4. Some 1841 

believe it is very rapid: onset within a day or two of materials being covered, to the point 1842 

where one interpretation of data is that 50% of all available material is converted within the 1843 

first year of placement in the fill [98]. The other has to do with methods used to estimate CH4 1844 

generation. 1845 

The classic model for CH4 evolution, as presented above, is that wastes take up to 1846 

several years to enter mature CH4 generation. 1847 

Most estimates for CH4 generation depend on models. LandGEM is relied on by 1848 

USEPA. A key input to Land GEM is waste deposition. In the US, there has been controversy 1849 

regarding the amount of waste generation. The USEPA model is the most relied upon source 1850 

of data, but this has been criticized as being theoretically unsound [120] and as 1851 

underestimating waste disposal considerably [225] [121]. Powell et al. [121] used revised 1852 

estimates of disposal to re-estimate CH4 emissions, and estimated open landfills have a 1853 

collection efficiency of 70% and closed landfills slightly exceed 80% efficiency. 1854 

Gas collection is a function of the landfill surface type. During operations, a sanitary 1855 

landfill has a 0.15 m soil cover (or something similar), designed to restrict vector access and 1856 

absorb odors. When filling operations are expected to stop for a lengthy but not permanent 1857 

time period, “intermediate” cover is used: 0.3 m of local soils (or equivalent, designed to 1858 

meet the vector and odor control functions of daily cover, and to be resistant to erosion. 1859 

Depending on soil types (or the choice of alternative materials), these covers may or may not 1860 

impede gas release from the fill. Final cover is supposed to seal the fill from the environment 1861 

(using clay or plastic as the main element of a cap), and should be impermeable to gas [226]. 1862 

Older developed country dumps and landfills and many developing country landfills only 1863 
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have soil covers of varying thickness as a final cover (c.f., [159]). Therefore, gas capture 1864 

efficiencies are strongly affected by the cover type. The purpose of gas collection also affects 1865 

efficiency. In the US, for regulatory compliance, most but not all gas needs to be collected 1866 

(allowable concentrations are <500 ppm CH4 measured 15 cm above the fill). Control 1867 

processes for lateral gas migration or to prevent off-site odors are often greater than needed, 1868 

so that atmospheric gases are collected as well as LFG. Lateral migration is often enhanced 1869 

when landfill surface soils are saturated [176], and has also been caused when fills are capped 1870 

without an active gas control system, and gas venting is absent or insufficient. Maximizing 1871 

energy output may require allowing some LFG to escape from collection, to avoid any LFG 1872 

dilution [226]. With all these site specific factors, it is difficult to develop one general LFG 1873 

collection efficiency value. Barlaz et al. [226] reported on a selection of reports, and found 1874 

that, using a definition of efficiency that measured collection compared to modeled gas 1875 

generation, final covers generally resulted in 90%+ collection efficiency, and intermediate 1876 

and other soil covers resulted in lower collection efficiencies between 50% and 80%. A 1877 

comprehensive set of tests at three French landfills, where efficiency was determined to range 1878 

between 41% and 94%, depending on cell parameters, resulted in the French government 1879 

setting a 35% efficiency value for operating cells, 85% for a cell with a clay cap, and 90% for 1880 

a cell with a geomembrane cap [101]. In the U.K., data suggested a good cap and a well-1881 

operated gas system would be highly effective at controlling emissions, reducing them by at 1882 

least one (90%+) and often two orders of magnitude (99%+), to as low as 10-4 mg m2 s-1 1883 

[169]. However, collection rates can never be 100%; there are inevitable leaks at wells and 1884 

along pipes and other installed equipment [215]. In the US, 90% of large landfills reported 1885 

gas collection efficiencies; these ranged from 47% to 95%, and the median value was 75% 1886 

[111]. 1887 

Operational policies can further limit control efficiency; plants may not operate when 1888 

collected gas is uneconomical to use, and these times may account for up to 50% of system 1889 

operations [215]. In the US, limits on O2 (5%) and N2 (20%) concentrations in gas treatment 1890 

systems, established for air quality purposes, limit the intensity of collection by operators by 1891 

preventing over pumping so as to incorporate significant amounts of atmospheric air [227]. 1892 

 1893 

6.4 Gas clean-up 1894 

Raw biogas from landfills is usually cleaned and upgraded for further utilization. 1895 

Water, H2S, siloxanes, and other impurities are removed in the “cleaning” process to 1896 
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minimize corrosion or other downstream problems which can double maintenance time 1897 

intervals. Upgrading means removing CO2 to increase the energy density [164].  1898 

 1899 

6.4.1 Hydrogen sulfide removal 1900 

Sulfur compounds are common contaminants in LFG. They are generated both from 1901 

anaerobic degradation of sulfur-bearing organic molecules (mainly proteins) and through 1902 

sulfate reduction. In landfills, construction and demolition debris, especially wallboard which 1903 

is largely composed of gypsum degrade with relatively large releases of H2S due to sulfate 1904 

reducing bacteria [228]. Hydrogen sulfide oxidizes to sulfuric acid, and so combusting LFG 1905 

containing H2S would cause corrosion to compressors, gas storage tanks and engines, and 1906 

cause the release of sulfur oxides (“SOx”) that are considered to be harmful air pollutants. 1907 

Standard technologies for H2S removal fall into two categories: physicochemical and 1908 

biological conversion. Physiochemical treatments can further be divided by media: 1909 

absorption into a liquid or adsorption on a solid [229]. 1910 

Marketed in 1890 and modified in 1936, the Claus process is the most popular process 1911 

employed for H2S removal on an industrial scale. As a first step, H2S is partially oxidized to 1912 

SO2 with air.  1913 

H2S +
3

2
O2 → SO2 + H2O       (Eq. 20) 1914 

Then the mixture reacts over a bauxite catalyst yielding elemental S and water.  1915 

2H2S + SO2 → 3S + 2H2O             (Eq. 21) 1916 

The main elements of Claus plant unit are a reaction furnace, two or three catalytic reactors, 1917 

and a tail gas treatment unit depending on H2S content. Many improvements of the Claus 1918 

process have been introduced since it was first introduced, and improvements in sulfur 1919 

recovery efficiency are still being sought [230]. 1920 

Aside from Modified Claus technologies, many other commercial applications have 1921 

been developed over last hundred years. At present, adsorption-based technologies are mostly 1922 

used to reach ultra-low sulfur levels [231]. Biological conversion is considered to be the most 1923 

economical and environmentally friendly method. Table 13 lists several examples of modern, 1924 

non-Claus technologies. 1925 
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Table 13. Comparison of existing sulfur removal technologies for biogas purification 1926 

Technologies Theoretical basis 

Representative 

commercial 

application 

Cost-Loading capacity Drawbacks 

Physico-

chemical 

Fe-chelated 

solution chemical affinity of H2S for 

metal cations 

Sulferox®; LO-

CAT® 

Sulferox®: $0.24-0.30 kg-1 

H2S 

Large initial investment, 

small scale system; 

expensive operation 

[226] [229] 

metal sulfate 

solution 

Still under 

development 
 

Scrubbing oxidation and neutralization 

Eco-Tec Inc. BgPurTM 

BioGas Purification 

System 

 

virgin activated 

carbon (AC) 
physiosorption DARCO® 

AC: 0.02 g g-1 AC; 

DARCO® 0.2 g g-1 

impregnated AC 

redox catalysts (sodium 

hydroxide or bicarbonate & 

nitrogen compounds) [233] 

catalysts  with higher 

capacity are under 

research 

 0.15 g/g of AC; up to 2.5 

g/g of impregnated carbon 

aerogels reported [234] 

Biological 

chemotrophic 

bacteria Sulfide oxidation to S0 with 

thiobacteria 

Thiopaq® 
Operating costs: $2.20 kg-1 

S  

 O2 and N2 inhibition 

following treatment 

[232] 

phototrophic 

bacteria 
Still in laboratory   

 1927 
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6.4.2 Other contaminants 1928 

The standard for acceptable quality depends upon the end use of the gas. Siloxanes, 1929 

halogenated compounds, other trace VOCs, water, ammonia and sometimes oxygen and nitrogen 1930 

are all removed from LFG under some conditions. Siloxanes and halogenated compounds are the 1931 

most harmful of these compounds when energy recovery is the goal, especially when present at 1932 

higher concentrations [236].  1933 

Siloxanes are derived from waste consumer products and are found in almost all LFG. 1934 

During combustion, siloxanes are oxidized and deposit as silicon dioxide solids, causing abrasion 1935 

of mechanical moving parts. The deposits can accumulate in layers inhibiting conduction of heat 1936 

and essential lubrication. Siloxanes are typically removed using one of three technologies: 1937 

adsorption, absorption, and deep chilling. The most widely used method is adsorption on 1938 

activated carbon [237]. Bio- and membrane filtration techniques appear promising but are not 1939 

easily commercialized [238] [239] [237]. Process configurations that minimize deposition 1940 

surfaces also can limit siloxane impacts [221]. 1941 

Halogenated compounds volatilize from the waste mass. They will form acids on 1942 

combustion [221]. Typically, larger molecules are removed by activated carbon adsorption [235]. 1943 

Many VOCs are also removed when CO2 is treated; water removal (drying) systems (just below) 1944 

result in 99% reductions in VOCs [240]. 1945 

LFG is always saturated. Water must be removed prior to end uses. Water can be 1946 

condensed by increasing the temperature or decreasing the pressure. Other techniques include 1947 

adsorption by silica gel, activated carbon, or aluminum oxide, and molecular sieves and 1948 

absorption in glycol solutions [235]. 1949 

Ammonia is generated by degradation of nitrogen-containing organics (e.g. proteins) and 1950 

nitrate reduction. It is a gas contaminant, but its presence in LFG has beneficial aspects. During 1951 

combustion it reacts with oxidized nitrogen compounds resulting in less NOx production. 1952 

Ammonia concentrations are often reduced as a secondary byproduct of treating other 1953 

contaminants, especially water [241]. 1954 

Oxygen and N2, indicative of atmospheric gases mixing with the LFG, are contaminants 1955 

of concern especially for LFG use as pipeline gas or when converted to vehicle fuels. Oxygen 1956 

and nitrogen can be removed by membranes, low temperature pressure swing adsorption, and at 1957 
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least partially when sulfur compounds are targeted. Even high-powered engines are relatively 1958 

intolerant of O2 and N2, with maximum allowable O2 being 0.5%, and combined O2-N2 being 1959 

2.5% [222]. Removing these gases is expensive. Avoiding over pumping the landfill to minimize 1960 

atmospheric gases in collected LFG can be driven solely by cost considerations.  1961 

 1962 

6.5 LFG Upgrading 1963 

The Wobbe index is a common measure of upgraded gas quality, and often is used as a 1964 

standard for conversion to fuels and for pipeline quality gas. The Wobbe index is proportional to 1965 

the methane content of LFG. It is measured by the heat produced by combustion of the gas 1966 

through a defined orifice under standard temperature and pressure conditions. Minimum Wobbe 1967 

index values tend to be 18 MJ/Nm3. European standards for pipeline quality often call for more 1968 

than 40 MJ/Nm3 [241]. 1969 

Removing CO2 is the most expensive part of gas treatment [235]. Costs are defined by 1970 

the size of the plant and specific selected technology [242].  Pressure swing adsorption (PSA) 1971 

and water scrubbing have the largest market shares, although since 2009, chemical scrubbers 1972 

(such as amine scrubber) have increased their share of the market; membrane filtration 1973 

technologies also hold promise [243]. 1974 

Pressure swing adsorption causes CO2 to be adsorbed on materials such as carbon 1975 

molecular sieves at elevated pressure (300-1000 kPa); the materials are regenerated at lower 1976 

pressures. Vacuum swing adsorption, similar to PSA, has a supplementary vacuum pump so the 1977 

desorption takes place under vacuum [244]. Skarstrom-type PSA units have four distinct 1978 

treatment processes: (1) adsorption, (2) pressurization of the feed stream, (3) more adsorption, 1979 

and (4) depressurization and desorption. New adsorbents, such as metal-organic frameworks, are 1980 

being investigated to improve PSA performance [245] [246]. Temperature swing adsorption can 1981 

also be applied for CO2 removal.  1982 

Water scrubbing is the simplest means of separating CO2 from LFG. It is based on the 1983 

different binding forces between more polar CO2 (and H2S) and non-polar CH4. It requires 1984 

physical absorption in counter-current water at high pressures, usually 700-1000 kPa, and 1985 

desorption with very little change in pressure or temperature [247]. Complete water recycling is 1986 

thought to be possible when an effective under-pressure desorption system and water cooler are 1987 
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used, but there are losses in removal efficiencies [240]. Organic solvents, such as polyethylene 1988 

glycol, can be used in place of water. Because of higher CO2 solubility in organic solvents, the 1989 

separation efficiency is greater. The trade-off is increased energy requirements to regenerate the 1990 

scrubber liquids [241]. Although H2S can be removed simultaneously in a water scrubbing 1991 

system, often accumulating elemental sulfur plugs the pipeline. 1992 

Amine scrubbing, mainly using mono ethanol amine (MEA) and di-methyl ethanol amine 1993 

(DMEA), has been used to separate CO2 from natural gas and H2 since 1930. Heat is needed to 1994 

regenerate the amine. It has high efficiency and selectivity [248]. 1995 

Membrane separation is based on the selective permeability of membranes. Basically 1996 

there are two types: dry and liquid membranes. Dry membranes are commonly in the form of a 1997 

hollow fiber with a high pressure (>2000 kPa, or 800-1000 kPa) feed stream inside and low 1998 

pressure (nearly atmospheric) permeate outside the tube. A compact module composed of many 1999 

individual fibers is fed biogas. The outlet methane content is controlled via the retentate gas 2000 

pressure by a proportional valve at the retentate outlet [242]. In liquid membrane systems, a 2001 

liquid absorbs the CO2 after it has permeated the membrane. This technology integrates 2002 

absorption and membrane processes and can be a competitive alternative technology [249]. High 2003 

selectivity of membranes, appropriate pressure, and recirculation are required to achieve both 2004 

high CH4 recovery and high CH4 levels in the product [247] [250]. The off-gas usually also 2005 

contains CH4 and should be burned to avoid emissions. 2006 

The cryogenic separation process removes CO2 by cooling and compressing the mixture 2007 

based on the difference in boiling points at ambient pressure for CH4 (-160°C) and CO2 (-78 °C). 2008 

It is a developing technology with few commercial applications, but is gaining more attention 2009 

due to increasing production of liquefied natural gas (LNG), as it can potentially remove 2010 

impurities and liquefy the CH4 simultaneously [235] [249] [95]. 2011 

  2012 

6.6 Utilization Options 2013 

One common end use for LFG is its release to the atmosphere with severe consequences. 2014 

Many closed landfills in developed countries and most fills in undeveloped countries simply 2015 

allow gas to escape to the atmosphere. This is due to a lack of collection equipment availability, 2016 

financial infeasibility for collection, or the inability of collected gas to sustain combustion.  2017 
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Another exercised option is to flare the gas: combust without energy recovery. The 2018 

decision to use depends on a combination of factors- a site may be too small to support energy 2019 

infrastructure, or more acceptable options discussed in the following section are not feasible for a 2020 

variety of technical and logistic reasons. The USEPA requires landfills that emit a certain 2021 

amount of NMOCs to control those emissions to the atmosphere, and flaring is generally 2022 

assessed to destroy 97% or more of NMOC and CH4. Flaring is a simple and relatively 2023 

maintenance free technology [172]. In some instances the waste heat can be used for beneficial 2024 

purposes. One is to evaporate or condense landfill leachate [163]. This way, two environmental 2025 

hazards are concurrently addressed. A number of landfill sites in the US supplement LFG with 2026 

natural gas in order to combust collected gas (for odor control or due to regulatory requirements) 2027 

if gas concentrations are too low (<20% CH4) to support good combustion. 2028 

IEA [163] identified the major barriers to LFG use. They are as insufficient capital, 2029 

insufficient awareness of technical options among operators and policy makers who could foster 2030 

projects, and difficulty establishing utility (electrical and gas) interconnections. 2031 

Final applications for purified and upgraded biogas (“biomethane”) are those for natural 2032 

gas. It can be used to produce electricity, combined heat and power (CHP), injected into the 2033 

natural gas grid, compressed to be vehicle fuel (CNG), processed to other oxygenated fuels, and 2034 

used to synthesize general and specialty chemicals. Preferred end uses are generally a function of 2035 

economics, which depends on regulatory support and hindrances, on the availability of utility 2036 

infrastructures, willingness of potential users to enter into contracts, etc. On-site gas-fired power 2037 

generation is still the dominant LFG end use due to its simplicity, and the ability of engines to 2038 

utilize gas of lower quality [251] [221]. On the other hand, a comprehensive 2039 

(technical/economic/environmental) analysis of different biogas utilization scenarios in Ireland 2040 

found that producing fuel with concurrent electricity generation with the process waste heat was 2041 

the best option [252]. In Italy, a study of GHG reductions associated with various options 2042 

determined that reforming and conversion in to an alternative fuel had the best result, though the 2043 

use in molten carbonate fuel cell is most energy efficient [253]. For the US, a cost analysis found 2044 

that pipeline gas use was always a more profitable option than on-site electricity production, 2045 

using averaged costs; the report noted specific site factors make the general case too simplistic 2046 

for more than general guidance [254]. Availability of grid connections for either electricity or 2047 
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gas, the ability of biogas to be compressed and stored, site space restrictions for processing 2048 

equipment or storage vessels all affect end-use considerations [94], as well as managerial 2049 

decisions regarding end-use preferences. Other important issues include forecasts of gas 2050 

production to determine investment risks, settlement of waste that can compromise piping 2051 

systems, and the need to management condensate that is generated as gases emerging from the 2052 

hot landfill (60 °C, typically) into ambient environmental conditions [222]. 2053 

 2054 

 6.6.1 Electricity production 2055 

The simplest end use for LFG is to produce electricity. The first such plant in the U.S. 2056 

was installed in California in 1975 [101]. There were nearly 1000 applications of various LFGTE 2057 

projects by 2001 (Table 14) [224]. Many other projects have begun since then but there is not a 2058 

good census of projects. In most places, the number of projects has increased since the mid-2059 

2000s: tripling in the U.K. and China, more than doubling in Germany, increasing by two-thirds 2060 

in the US; the number of plants fell slightly in Sweden, though the reason is no clear. It is 2061 

difficult to accurately count projects: the LMOP website [255] has a data base that lists ~ 850 2062 

operational projects (excluding "self-sponsored" projects), but LMOP reports only 645 LFGTE 2063 

projects. 2064 

 2065 
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Table 14 LFGTE plants in select countries and worldwide 2066 

Country 1992 

[171] 

1995 

[107] 

2001 

[224] 

2003 

[101] 

2004 

[98] 

2007 

[251] 

2008 2009 

[251] 

2010 

[251] 

2011 

[251] 

2012 

[251] 

2013 

[222] 

2015 

US 114 ~100  325 350 380       621 645 

[255] 

Germany   150 180         400 

[256] 

UK   135 150         442 

[257] 

The 

Netherlands 

  60           

Sweden   70          60 

[258] 

Italy   40 135          

Canada   25           

Australia   25           

China      15 19 

[251] 

20 

[126] 

25 35 46 50   

Worldwide  >400 955 1100          
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The most common technology for power generation is an internal combustion engine, 2067 

sized from 100 kW to 3 MW in the US [222], with production efficiencies of up to 43%, 2068 

although 30%-40% is more common [259]. Such engines are the cheapest to obtain and operate, 2069 

are relatively mobile, but have the most emissions, and so can be difficult to permit [223] [222]; 2070 

they also require relatively frequent overhauls [88]. Smaller systems (<500 kW) became feasible 2071 

in the US with spiking fuel prices ~2011, although typically small systems have used 2072 

microturbines [260].  2073 

Other options that are used include gas turbine, organic rankine cycle, stirling cycle 2074 

engine, molten carbonate fuel cell, and solid oxide fuel cell. Larger plants (> 800 kW) tend to use 2075 

gas turbines [250], which in the US have been sized from 800kW to 10.5 MW [222]. Gas 2076 

turbines require high pressure gases and so usually need a compressor. At smaller sites, micro-2077 

turbines are becoming favored; in the US, installations range from 30 kW to 250 kW [222]. 2078 

These tend to be simple with few moving parts and so require less maintenance. Efficiency is 2079 

less, partly because compressors are parasitic loads [88]. Microturbines have been configured not 2080 

only to use smaller amounts of gas, but gas with lower energy density [261]. The largest turbine 2081 

project is a 50 MW plant that uses a steam turbine [101]. Stirling engines were developed in the 2082 

19th Century, but gasoline and diesel engines were favored over them. Because they work well 2083 

with fuels with high heat capacity and have external combustion, contaminants do not harm 2084 

engine parts, they are gaining attention as alternate means of using LFG. Molten carbonate and 2085 

solid oxide fuel cells have high capital cost; solid oxides require very high operating 2086 

temperatures (800-1000 ºC), increasing operating costs, and molten carbonate fuel cells are still a 2087 

developing technology [223]. Solid oxide fuel cells have high conversion efficiencies, but the 2088 

needed catalysts are sensitive to impurities; this requires gas upgrading, an add-on cost [250]. 2089 

Electricity pricing also tends to be more stable than other uses, which can make it more 2090 

attractive, especially if financing is required [262]. 2091 

An upgrade from simple electricity production is CHP. Waste heat from the electricity 2092 

production stage can be captured and used to create steam or hot water though its use is restricted 2093 

to local use [259], though the overall energy efficiency can approach 85% [95]. 2094 

 2095 

6.6.2 Natural gas grid  2096 
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A recent trend has been for governments to provide subsidies to promote biogas 2097 

upgrading for pipeline injection to avoid wasting energy, such as heat produced by engines, that 2098 

produce electricity [243]. By injecting biogas directly into the grid, the gas can be transferred to 2099 

a location where it has a higher value than it does locally. In most regions, there is greater need 2100 

for gas than there is local production, so there is steady demand for fuels and grid injection 2101 

[247]. Early adopters of LFG for the natural gas grid include The Netherlands, Sweden, 2102 

Germany, and Switzerland [250]. Nine EU countries inject biomethane into the natural gas grid 2103 

[95]. The grid use can be fostered if access is supported by regulations [250]. In order to be 2104 

accepted into the gas grid, the biogas must meet set limits for sulfur, O2, particulates, CO2, water 2105 

dew point, and, of course CH4 content [247]. The injected gas must be odorized (to detect leaks), 2106 

typically with tetrahydrothiophene (THT) or mercaptans [263] to meet the safety guidelines.  2107 

 2108 

6.6.3 CNG vehicles 2109 

If LFG meets gas grid standards, it can be compressed and used as a vehicle fuel. 2110 

Vehicles that can use CNG include buses, trucks of various kinds including waste collection 2111 

trucks, and even passenger cars [247]. By 2011, over 1 million vehicles used natural gas in 2112 

Europe, with over 2,800 refueling stations. Italy ranked one in CNG vehicles while Germany had 2113 

most CNG refueling stations. However, in absolute terms, the numbers represented less than 2114 

0.5% cars and trucks, and only about 1% of buses in Europe [95]. As of 2013, there were over 2115 

100,000 CNG-powered vehicles in the US [260].  2116 

 2117 

6.6.4 Renewable liquid fuels  2118 

Though electricity production dominates LFG use worldwide, it can be transformed into 2119 

liquid fuels for transportation [247]. One of the advantages of liquid fuels end-product is the 2120 

avoidance of the forced use of LFG after its extraction, i.e., through convenient storage as a fuel 2121 

to be used or marketed with a degree of choice to meet the projected needs and not to respond to 2122 

the availability of the gas. 2123 

All methods to convert LFG to liquid fuels go through the synthesis gas (CO and H2) 2124 

step. There are four principal technologies to generate synthesis gas from LFG. These are: (1) 2125 
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steam reforming; (2) dry (CO2) reforming; (3) partial oxidation; and (4) autothermal reforming 2126 

[275], though steam and autothermal reforming have been the dominant processing paths [264]. 2127 

 2128 

6.6.4.1 Synthesis gas production technologies 2129 

The main unit for steam-reforming is the primary reformer, which consists of 2130 

approximately 10 m long narrow tubes situated in an oven, loaded with catalyst [265]. Steam 2131 

reforming produces the highest proportion of H2 with the least amount of CO, but is highly 2132 

endothermic requiring extensive heat transfer equipment and longer start-up times [266].  2133 

 2134 

CH4 + H2O → CO + 3H2                            (Eq. 23) 2135 

The ratio of synthesis gas constituents (H2, CO, CO2, and CH4) depends on reaction 2136 

conditions such as temperature and pressure, the feedstock used, reactor characteristics and 2137 

residence time to reach the equilibrium state [266]. Elevated temperatures favor the forward 2138 

reaction in Equation 23, and removing products from the reactor can maintain the driving force 2139 

for the reaction. Some effective removal strategies are H2 removal by membrane, CO by 2140 

absorbent, but this is often not economic [267].  2141 

Catalysts, based on nickel with supporting materials and promoters, have been used since 2142 

the 1960s to achieve higher feed conversion and less carbon deposition [266]. Problems 2143 

associated with nickel catalysts under high temperature and pressure include declining activity, 2144 

sulfur poisoning, carbon deposition (coking) and sintering [265]. Coking is caused by CH4 2145 

decomposition to solid carbon and H2 or the Boudouard reaction in which CO disproportionates 2146 

to carbon and CO2 [268]. An adiabatic pre-reformer upstream of the primary reformer can reduce 2147 

the risks of sulfur poisoning and carbon deposition [265], and effective biogas cleanup also 2148 

reduces risks of sulfur poisoning. Research targets as alternative catalysts include zinc, activated 2149 

carbon, aluminum, and cerium, which may increase selectivity, stability and activity [267]. 2150 

Dry reforming [269] can remove both CO2 and CH4 from gas streams simultaneously. 2151 

Dry reforming is also a strongly endothermic reaction and requires operating temperatures of 2152 

800–1000 °C to attain high equilibrium conversion of CH4 and CO2 to H2 and CO, and to 2153 

minimize the thermodynamic driving force for carbon deposition. It produces syngas with a 2154 

lower H2/CO ratio than steam reforming. With lower H/C ratios, there is a greater potential for 2155 
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carbon formation, generally the most significant mechanism of catalyst deactivation in dry 2156 

reforming [266] [268] [270]. 2157 

CH4 + CO2 → 2CO + 2H2            (Eq. 24) 2158 

Dry reforming works best when the best inflow ratio of CH4/CO2 is 1:1. Landfill gas and most 2159 

AD gases also have approximately equal CH4 to CO2 ratios, thus underscoring the feasibility of 2160 

dry reforming for these gas streams.  2161 

Nickel-based catalysts work best in dry reforming [271]. Noble metals like Pt, Rh and Ru 2162 

are highly active and resistant to carbon formation due to lower operating temperatures. Small 2163 

amounts of noble metals help in terms of activity, suppression of Ni oxidation, carbon formation, 2164 

self-activation, and sustainability in the daily startup and shutdown operations [268] [272]. 2165 

Another effective way of resisting deactivation by carbon formation is to increase pH, which 2166 

helps activate mildly acidic CO2 and assists in oxidation of surface carbon [273]. 2167 

Partial oxidation needs nearly pure oxygen to hinder side reactions between nitrogen and 2168 

other components [274]: 2169 

CH4 +
1

2
O2 → CO + 2H2                 (Eq. 25) 2170 

The reaction is slightly exothermic. Catalytic partial oxidation circumvents the coking problem, 2171 

and has a greater selectivity to syngas production, but requires the separation of oxygen from air 2172 

and potential risks of explosion [275]. 2173 

Autothermal reforming combines endothermic steam reforming with exothermic partial 2174 

oxidation reactions, separating total oxidation and reforming [276]. A water-gas-shift (WGS) 2175 

reaction is used to adjust the H2/CO ratio for the following synthesis: 2176 

CO + H2O → CO2 + H2               (Eq. 26) 2177 

The WGS and steam reforming are major reactions used for H2 production. In steam 2178 

reforming, the WGS reaction departs from its equilibrium position (CO-rich), especially at low 2179 

methane conversion rates [266].  2180 

 2181 

 6.4.4.2 Synthesis gas to liquid fuels 2182 

Synthesis of hydrocarbons. Synthesis gas, produced from any one of the methods 2183 

described in section 6.4.4.1, can be catalytically converted to renewable liquid fuels. Though 2184 



94 

synthesis gas produced from reforming is ideal to produce the ultimate gaseous carbon-free fuel, 2185 

H2, the focus of this section is liquid fuels [267]. The produced synthesis gas can be converted to 2186 

liquid fuels and chemicals, specifically, drop-in replacement hydrocarbons (diesel, gasoline, jet 2187 

fuel), methanol, and dimethyl ether (DME) [275] [264] [276] [277]. 2188 

The Fischer-Tropsch (F-T) synthesis route is long commercially practiced process in 2189 

which synthesis gas is converted to hydrocarbon liquids over iron (Fe) or cobalt (Co) based 2190 

catalysts at temperatures and pressures of 200-350°C and up to 1500 kPa [278] [279]. The 2191 

hydrocarbons, produced via the F-T route, are superior than conventional gasoline and diesel, 2192 

since these are free of sulfur and aromatics [280]. In terms of mechanism, the F-T reaction is 2193 

akin to polymerization, and goes through a set reaction sequence: adsorption, chain initiation, 2194 

propagation and chain growth termination. The overall F-T route to hydrocarbons are 2195 

represented in equations 27 and 28.  2196 

 (2n + 1)H2 + nCO → CnH2n+2 + nH2O              (Eq. 27) 2197 

2nH2 + nCO → CnH2n + nH2O               (Eq. 28) 2198 

The F-T reaction is accompanied by the WGS reaction. Side reactions include production 2199 

of oxygenates, carbide formation, and Boudouard reaction, the latter two negatively affects 2200 

catalyst activity over time. Both Co and Fe catalysts are very effective to yield high per pass 2201 

conversion (up to 90%) of synthesis gas. However, the reaction is constrained in two ways: 1) 2202 

the gaseous product is high in CO2 indicating wasted carbon and 2) the overall product slate 2203 

contains a mixture of hydrocarbons that requires further upgrading to yield gasoline, diesel, jet 2204 

fuel and waxes and affects process economics. Promoters such as alkali metals and supports to 2205 

anchor Fe or Co catalysts are added to enhance performance [281].  2206 

The F-T processes can be classified either by operating temperature (high temperature F-2207 

T, 300-350 °C, low temperature F-T 200-240 °C) or reactor type (fixed-bed F-T, slurry bubble 2208 

column F-T, or circulating fluidized bed F-T). Circulating fluidized bed is mostly applied for 2209 

high temperature F-T using Fe catalyst, while fixed-bed and slurry bubble column are usually 2210 

used for low temperature F-T using both Fe- and Co-based catalysts to produce long chain 2211 

hydrocarbons [281]. 2212 

The overall F-T processing scheme consists of reactors, recycling and compression of 2213 

unconverted syngas, removal of H2 and CO2, reforming of produced CH4, and separation of 2214 
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products [279]. Since the reactions are exothermic, process heat capture can be utilized to 2215 

produce electricity to offset process cost. High molecular weight hydrocarbon products can be 2216 

cracked to obtain liquid fuel in the C6 - C18 range [282]. 2217 

Synthesis of Oxygenates. Conversion of synthesis gas to oxygenates such as methanol 2218 

(methyl alcohol), dimethyl ether (DME) and higher alcohols (typically C1-C6) is another route to 2219 

synthesis gas utilization. This class of products is gaining interest due to their clean burning 2220 

properties. Methanol, a common solvent, is a versatile feedstock for production of formaldehyde, 2221 

ethylene, propylene and fuels such as DME. Methanol synthesis is well developed since 1960s’ 2222 

when a lower pressure process (less than 10,000 kPa) based on commercial Cu/ZnO/Al2O3 2223 

catalyst was introduced [275]. Other oxides such as ZnO/Cr2O3, V2O5, V2O3, and ThO2, are also 2224 

effective supports or promoters of Cu-based low-pressure methanol synthesis catalysts [283]. As 2225 

for methanol, the reaction: 2226 

2H2 + CO → CH3OH                 (Eq. 29) 2227 

is exothermic and is carried out in two-phase reactors with synthesis gas and products in the 2228 

vapor phase and the catalyst in the solid phase. Optimal reaction temperatures are limited by the 2229 

inherent low heat capacity of vapor and large reaction heat. A liquid-phase methanol synthesis 2230 

process based on CO2 hydrogenation reaction and the forward WGS reaction was first developed 2231 

by Chem Systems in the late 1970s [284].  2232 

DME (CH3OCH3) is a volatile organic compound (VOC) but is considered 2233 

environmentally benign when used as a fuel. Because it has very low particulate emissions when 2234 

combusted and contains no sulfur compounds, it is viewed as a potential fuel for the 21st century 2235 

[276] [285], and can be used as an efficient H2 carrier for fuel cells and other applications [286]. 2236 

It has physical properties that are similar to liquefied natural gas (LNG), and so DME could use 2237 

the existing land-based and ocean-based LNG infrastructure with minor modification, which 2238 

decreases investment requirements for its transportation and storage [276]. The first presentation 2239 

of neat DME as a diesel fuel appeared in 1995. Compared with traditional diesel, DME fueled 2240 

engines generate less noise, and emit fewer pollutants (particulates, NOx, hydrocarbons, and 2241 

CO). However, it has a lower energy density than diesel, so a double-sized tank is needed to 2242 

maintain similar travel range [287]. DME engines have certain special requirements: a vapor 2243 
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pressure of 510 kPa at 25°C, low viscosity and lubricity, with compressibility rising near full 2244 

load conditions. These require improved seals and the lubrication, issues that are not as 2245 

significant in stationary engine applications [288].  2246 

DME is usually produced in a two-step process: syngas to methanol, and methanol 2247 

dehydration to dimethyl ether [276]. This is a mature technology, commercialized by companies 2248 

like Haldor Topsøe A/S, Toyo Engineering Ltd., Air Liquide, S.A. and JFE Holding Inc. [289].  2249 

The reaction for methanol dehydration is: 2250 

2CH3OH → CH3OCH3 + H2O                   (Eq. 30) 2251 

 2252 

The reverse WGS accompanies this reaction. The yields of CO by reverse WGS reaction should 2253 

be kept to a minimum to maximize productivity [286]. 2254 

The conversion of syngas to methanol and to DME in the same reactor frees the process 2255 

from the thermodynamic equilibrium constraint of methanol synthesis alone. The best syngas 2256 

composition for methanol synthesis is a H2/CO ratio of 2:1, but methanol dehydration should be 2257 

CO-rich. In a single reactor, synergy can be obtained among methanol synthesis, methanol 2258 

dehydration, and WGS. By recycling methanol and water along with the unconverted syngas, the 2259 

overall reaction can be achieved as follows: 2260 

3H2 + 3CO → CH3OCH3 + CO2             (Eq. 31) 2261 

 2262 

The productivity and material utilization in a one-step syngas-to-DME reactor with 2263 

recycle depends strongly on the feed gas composition [277]. This reaction has low carbon 2264 

utilization, due to one-third of the carbon in the syngas lost to CO2. 2265 

 The one-step reactor requires a bifunctional hybrid DME synthesis catalyst, consisting of 2266 

a methanol synthesis catalyst (such as CuO–ZnO, CuO–ZnO–Al2O3, CuO–ZnO–CrO3, or CuO–2267 

TiO2–ZrO2), and a methanol dehydration catalyst (such as γ-Alumina and ZSM-5 zeolite). 2268 

Preventing the aggregation of Cu active sites and preserving catalyst structure are key factors to 2269 

obtain higher activity and DME selectivity with hybrid catalysts [286]. 2270 

Higher Alcohol Synthesis (HAS), is another option to utilize synthesis gas. The use of 2271 

high octane higher alcohols or mixed alcohols (C1–C4 alcohols) as a fuel or fuel-additive 2272 

continues to attract attention [290] [291] [292] [293]. In early twentieth century, non-selective 2273 
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ZnO/Cr2O3 catalysts promoted by alkali were used for higher alcohol synthesis, producing large 2274 

amounts of hydrocarbons. In 1980s, much more active and selective Cu/ZnO catalysts promoted 2275 

by heavy alkali were developed [293]. The alkali-promoted transition metal sulfide catalysts, 2276 

particularly disulfide molybdenum (MoS2), have been extensively studied, but are associated 2277 

with low space–time–yield and poor selectivity at high temperatures where these catalysts are 2278 

active [290] [292]. Studies continue to increase productivity and selectivity to match those 2279 

needed for commercial operation [290] [292] [294]. 2280 

So far, this section briefly described pathways to utilize purified landfill gas for 2281 

renewable electricity and fuels production. However, the challenge is “economy of scale” and all 2282 

known routes, F-T., Methanol, HAS, DME, discussed herein, face formidable challenge for 2283 

implementation when LFG is considered as feedstocks at available scales (less than 300 cubic 2284 

meters). The challenge to use small gas sources has spawned new niche industry, namely mini-2285 

gas-to-liquids (GTL) plants. The World Bank Group has been actively sponsoring studies in this 2286 

area but with a focus on flared gas that normally mirrors LFG range. It is interesting to note that 2287 

400 cubic meter natural gas is annually flared during oil and gas operations- this gas is 2288 

equivalent to 750 billion kWhr or 500 million barrels per year of oil with a value of $35 billion. 2289 

A recent report provides a comprehensive review of upcoming mini-GTL projects [295); these 2290 

technologies could be considered for implementation at select landfill sites.            2291 
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7. Policy considerations associated with landfill gas use 2292 

Shindell et al. [296] screened over 400 existing pollution control measures to determine 2293 

potential worldwide emissions reductions of particulate and gaseous species, and selected 2294 

measures that reduced climate change and improved human health. The CH4 mitigation measures 2295 

have large climate change impacts, greater than controls on black carbon emissions, but little 2296 

effect on human health. They note that many other policies can reduce CH4 emissions other than 2297 

those selected by their criteria, and that CH4 reductions provide strong short-term mitigation of 2298 

climate change, but much have much smaller effects on long-term climate change (which is 2299 

controlled more by CO2 releases). van der Berg et al. [297] appeared to agree on CH4 abatements' 2300 

greater short-term impact (compared to CO2), as their analysis of changes in IPCC GWP factors 2301 

showed 25 year horizon computations had greater relative benefits for CH4 emission controls 2302 

compared to CO2 mitigation, but a 500 yr horizon showed more benefits accruing to CO2 control. 2303 

In the last decade, new sources of natural gas have been exploited with the availability of 2304 

fracking technologies. A comparison of five different models of demand effects, assuming 2305 

estimates of extractable reservoirs are accurate, found that increased use of natural gas had no 2306 

discernable impact of overall CO2 (and CO2e) releases through 2050. Gas will replace coal for 2307 

electricity production, but was forecast to have little to no impact on transportation. The effect is 2308 

seen because natural gas will also displace demand for renewable energy sources, and abundant 2309 

gas will accelerate the global economy [82]. The impact could be negative if assessments that 2310 

find fracking cause more CO2 releases than it prevents are accurate [20]. Still, because of the 2311 

short atmospheric residence time for CH4 (especially relative to CO2), many assessments assert 2312 

that changes in fugitive CH4 quantities can have more immediate effects than other GHG 2313 

reductions [59]. 2314 

If there is a technology change, and CH4 is used to replace other GHG-releasing 2315 

technologies -- for instance, to power vehicles -- the impact may be negative at first before 2316 

benefits over current conditions are realized.  This is due to increases in leakage from the natural 2317 

gas pipeline network, so that radiative forcing would be increased for 80 years (replacing 2318 

gasoline vehicles) or 280 years (replacing diesel vehicles) before the greater efficiency of natural 2319 

gas use leading to lower CO2 emissions would offset the short-term impact of greater CH4 2320 

releases [86]. 2321 
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Murray et al. [254] point out that increasing end uses and the potential to continue 2322 

increasing gas supplies through fracking or other technological changes makes accurate price 2323 

predictions difficult. Good understanding of future markets for recovered gas is important to 2324 

make sound decisions regarding technology choices and end markets. Higher air pollution 2325 

control requirements make natural gas a much better choice than other fossil fuels, due to greater 2326 

efficiencies, lower particulate generation, and generally lower acid gas formation rates, and 2327 

could also boost demand. 2328 

Emissions allowances and carbon trading have been identified as a means of monetizing 2329 

GHG reductions. These markets have not had great success to date. California has had an 2330 

emission trading program, with prices varying from $10-$16 T-1 CO2e, but towards the lower end 2331 

of that range as of 2013; the floor price is $10 T-1 CO2e. In the EU, prices reached $40 T-1 CO2e 2332 

in 2008, but the market collapsed with a drop in demand due to the global recession, and did not 2333 

recover [254]. 2334 

Given difficulties in assessing current landfill emissions of CH4 with great accuracy, it is 2335 

perhaps more difficult to create a credible forecast of future releases. One estimate suggests they 2336 

will double by 2030. This estimate used forecasts of energy consumption to estimate MSW 2337 

generation (assuming energy use is a proxy for materials use and general economic activity), 2338 

and, based on trends from the early 2000s, estimated the amounts of waste that might be diverted 2339 

from landfilling by recycling and waste-to-energy incineration, and also tried to forecast the 2340 

future capture of CH4 at landfills [99]. The forecast is obviously speculative. 2341 

A British cost-benefit analysis found that the greatest impact on national LFG release 2342 

rates comes from capping and installing gas control system at the largest CH4 sources. Depth of 2343 

waste rather than landfill surface area is a better indicator of CH4 production capability. 2344 

Installing a flare cost only 10% the cost of a cap, and for most small sites a cap was not cost-2345 

effective considering the potential reduction in CH4 emissions, and that the UK could meet its 2346 

short-term CH4 reduction goals without controlling gas from these sites [169]. In addition, some 2347 

have called landfill gas control "technically difficult and costly" [189]. However, there can be 2348 

synergies when LFGTE projects are considered. One Thailand landfill forecast capturing only 2349 

10% of generated gas through a collection system, but displacing fossil fuel electricity by LFG 2350 
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electricity increased the value of captured gas four times, to the equivalent of achieving a 40% 2351 

capture rate [298]. 2352 

Currently there is no means to account for "social" costs associated with GHG emissions 2353 

in general, and LFG impacts in particular. Jaramillo and Matthews [299] assessed effects such as 2354 

offsets to primary air pollutants and determined there could be substantial benefits, if these could 2355 

be monetized. In addition, many risk assessments of pollution decreases find that human health 2356 

benefits are often substantial, and these considerations are included in risk-benefit assessments of 2357 

proposed regulations (e.g., [300]); but that is not monetizing them for the benefit of project 2358 

developers. 2359 

The sum effect of these and similar reports appear to make the twin goals of greater 2360 

exploitation of renewable sources of CH4 and reductions in easily stopped fugitive CH4 2361 

necessary. van Foreest [95] forecast slow increases in biomethane production in Europe, but 2362 

thought it could comprise as much as 10-20% of current natural gas use there, potentially by 2363 

2030. And economic analyses by the Global Methane Initiative [301] find that landfill emission 2364 

reductions of 30% are feasible and relatively affordable, and reductions as great as 72% are 2365 

achievable with current technologies and represent the most economical fugitive gas reductions 2366 

available.  2367 

However, for India, IEA [130] assumes that because so much waste is food waste which 2368 

rapidly decays, that only the largest landfills will be able to support gas projects. The small waste 2369 

generation rate generally reported for India means that only the ten largest cities can support 2370 

landfills of an appropriate size. However, it is not clear that anything approaching accurate waste 2371 

generation data are collected in India, or that food waste necessarily decays as swiftly in India 2372 

landfills as is assumed by IEA. In addition, growing affluence is likely to alter waste generation 2373 

patterns in India. Thus, it is difficult to place great reliance on broad assessments of what should 2374 

probably be local, situational analyses. 2375 

If gas collection and control are not to be utilized for any reason, Huber-Humer et al. 2376 

[215] recommend that various bio-engineered structures be installed on landfills. These promote 2377 

the growth of methanotropes and therefore minimize CH4 emissions. In developing countries and 2378 

for old landfills, degasification is often too costly to consider [189]. Another control is to limit 2379 

the input of organic material, through organic material landfilling bans [154] [302], or, as in the 2380 
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EU, requiring treatment to make carbon-containing compounds less labile (see below). India, for 2381 

instance, banned organic matter from landfills in 2000, with the intention of reducing fugitive 2382 

CH4. This would have required a major restructuring of India's somewhat undeveloped waste 2383 

management system. No significant support was provided to implement the ban and required 2384 

changes, and so no noticeable effect was seen in waste management practices [163]. 2385 

Brandt et al. [62] note that the imprecision and inaccuracy of CH4 assessments mean that 2386 

policies targeting certain sectors or sources for overall GHG reduction, economical, or efficiency 2387 

reasons may be flawed, as the basis for the prescription is unlikely to be well described. Note 2388 

that the range of credible landfill CH4 emissions collected by Huber-Humer et al. [215] was 35 2389 

Tg yr-1 to 70 Tg yr-1 (the widest we were able to find). These uncertainties concerning the scope 2390 

of the problem suggest that better activities addressing fugitive CH4 will be able to stand on their 2391 

own rights – that while understanding the context and intended larger impact of actions is 2392 

important to set broad goals, particular projects should be set in the realities of local economics, 2393 

needs, and purposes. 2394 

IEA [163] identifies a lack of capital, ignorance of opportunities by decision-makers, and 2395 

some technical issues, such as interconnections to utilities, as being the primary barriers to LFG 2396 

projects worldwide. Capital shortcomings can be partially addressed through financial policies, 2397 

such as feed-in tariffs, tax incentives and relief, power purchase requirements and incentives that 2398 

reduce costs or enhance revenues for site operators. Interconnection issues can be addressed 2399 

through policies that require renewable energy connections, or that may standardize regulations 2400 

that may favor one provider over another. Net metering at one site or across an owner's multiple 2401 

sites can provide fiscal relief, too. And government direction and education can foster behaviors 2402 

by providing information that is useful and pertinent to potential project developers. This can 2403 

include sponsoring demonstration projects. 2404 

For those purposes, we now review existing government policies that address reductions 2405 

in landfill gas emissions, and support the use of captured gas in the US and China, and also 2406 

discuss other notable initiatives from the EU.  2407 

7.1 US Policies 2408 

Methane emissions in the United States have declined by 11% since 1990. However 2409 

without further action, these levels are estimated to increase to ~25 Tg yr-1 by 2030 [303]. 2410 
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The Obama administration announced intent to reduce CH4 emissions in its 2014 2411 

“Climate Action Plan.” As part of the implementation of the plan, USEPA proposed in August 2412 

2015 to reduce oil and gas sector CH4 emissions 40-45% by 2025 (from 2012 levels). The plan 2413 

focuses on leaks, and to reduce and capture gas along the production pathway at pumps and 2414 

pipelines and at closed facilities. The gas and oil sector plan is to be coupled with existing, 2415 

voluntary programs: the Methane Challenge Program, the Coalbed Methane Outreach Program 2416 

(CMOP), the AgSTAR Program, and the Landfill Methane Outreach Program (LMOP). The 2417 

Methane Challenge program is part of “Natural Gas Star,” which encourages, supports, and 2418 

recognizes companies that are making ambitious improvements in reducing methane emissions. 2419 

CMOP was formed to address barriers to using coal mine CH4 (to reduce releases to the 2420 

atmosphere). The AgSTAR Program in 2014 combined US Department of Agriculture, USEPA, 2421 

and US Department of Energy efforts to produce a “Biogas Opportunities Roadmap.” This 2422 

outlined government support for research, investments, markets, and communication for the 2423 

biogas industry, with a focus to reduce methane emissions from the agricultural sector while 2424 

increasing energy independence, and to supply biogas projects with feedstocks [303].  2425 

In 1991, USEPA proposed emissions guidelines for existing landfills and New Source 2426 

Performance Standards for new landfills under its authority granted under the Clean Air Act. The 2427 

regulations were promulgated in 1996, and affected sites that released 50 Mg yr-1 of NMOC. 2428 

LFG is the carrier medium for the NMOCs to the atmosphere; NMOC are regulated under the 2429 

Clean Air Act, but LFG itself is not. However, because LFG control leads to NMOC control, 2430 

LFG became the target of the regulation. Affected landfills included all sites with capacity of 2.5 2431 

million Mg or 2.5 million m3, and sites under that capacity that modeled emissions of NMOC 2432 

above the 50 Mg yr-1 standard. The regulation required gas collection systems and reduction of 2433 

NMOC by 98%. Combustion of LFG was the means to meet the standard; sale of gas into 2434 

pipelines or for other purposes was allowed, as long as gas clean-up did not release NMOC to the 2435 

atmosphere. Gas had to be collected from active cells within five years of waste placement and 2436 

from all closed cells [142]. In 2000, USEPA proposed National Emission Standards for 2437 

Hazardous Air Pollutants (NESHAP) for MSW landfills (65 FR 66672). The rule was finalized 2438 

in 2003 (66 FR 2227). The rule added monitoring and reporting requirements, and modified 2439 

regulations regarding process upsets and for bioreactor landfills. It required the emission control 2440 
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devices to be governed by “MACT” – maximum available control technology. This means the 2441 

landfill emission controls must be as good as if not better than the devices that obtained the 2442 

highest control of relevant air pollutants. In 2015, USEPA proposed amendments to these rules, 2443 

which primarily focused on including smaller sites under the rules by dropping the limit of 2444 

NMOC to 34 Mg yr-1. The new rule also called for increased (quarterly) surface monitoring. 2445 

Closed landfills that do not produce much CH4 would be exempted from the requirement to 2446 

control gas emissions [304]. 2447 

The US Greenhouse Gas Reporting rule, created in response to requests by IPCC, was set 2448 

in place in 2009 (Final Rule 74 FR 56260). It required landfills emitting 25,000 T CO2e yr-1 to 2449 

report data annually to USEPA, that affected 1,200 landfills in the US [121]. 2450 

The US Renewable Fuel Standard (authorized in 2005 and expanded in 2007) requires 2451 

over 100 billion L of renewable fuels by 2022; biogas from landfills qualifies as cellulosic 2452 

biofuel (RIN D-code 3 if used as CNG, RIN D-code 7 if converted to a biodiesel) [305]. 2453 

Renewable fuels, under the standard, must create fewer GHGs as measured by a Life Cycle 2454 

Analysis (at least 20% less, generally, but more for certain applications). Biodiesel counts 50% 2455 

more than ethanol and CNG (eCFR Title 40, Chapter I, Subchapter C Part 80 Subpart M). This 2456 

rule creates a large impetus for LFG-to-fuel conversions [260]. 2457 

In 2008, the Energy Improvement Act gave public entities (mostly local governments) 2458 

the ability to issue tax credits in place of paying interest as a financing mechanism for renewable 2459 

energy projects, including LFG projects. This program was expanded in the American Recovery 2460 

and Reinvestment Act (2009) [306]. The Renewable Energy Production Incentive is a pricing 2461 

incentive offered since 1992. It is currently $0.009 kWhr-1 [307]. Various states offer their own 2462 

production incentives [223]. 2463 

In 1994, USEPA created the Landfill Methane Outreach Program (LMOP) to expand use 2464 

of LFG. LMOP not only promotes projects, but assists site managers in complying with US 2465 

regulations, as they are developed and revised [299]. A total of 580 LFGTE projects have been 2466 

established in the last 18 years with the assistance of LMOP; the total CH4 emission reduction is 2467 

estimated at 8.6 Tg [303]. In 2015, USEPA released proposals to further reduce landfill CH4 2468 

emissions by 440,000 T yr-1 by 2025 [304]. LMOP has expanded its program beyond US borders 2469 

through the Methane to Markets Partnership in 2004 (the Global Methane Initiative). Partly this 2470 
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is a technology transfer activity, promoting US consultants and technology providers, and 2471 

creating greater energy security and economic growth in the partnership countries, but it is also 2472 

an effort by the US to create global awareness of the potential to reduce landfilling impacts on 2473 

the environment [299].  2474 

The Global Methane Initiative is a voluntary consortium of 43 countries. Each member is 2475 

requested to prepare an action plan. Contents of the Action Plan are suggested to be items such 2476 

as a CH4 inventory, objectives and planned initiatives, participants in CH4 generation and 2477 

abatement, plans to promote reductions, and challenges to achieving any reductions [308]. Table 2478 

15 lists participation in some major elements of the MSW portion of the initiative. Projects, 2479 

which can range from specific machinery at landfill sites to whole landfill gas projects, are listed 2480 

in a database, which provides inconsistent details regarding the site and the activities, and also 2481 

links to any project reports. An interactive map is also available for each country, and these maps 2482 

often show more projects than listed on the data base. The map supports a link to the data base, 2483 

even if the direct search of the data base disclosed no available information.   2484 

  2485 
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Table 15. Global Methane Initiative [301] 2486 

 MSW Action Plan Last Update LFG Projects  

(GMI projects) 

LFG Projects on Map 

Albania     

Argentina X 2013 14 (7) X 

Australia X 2006   

Brazil X 2011 34 (7) X 

Bulgaria  2014 1 (1) X 

Canada  2013  X 

Chile  2014 17 (8) X 

China X 2012 30 (7) X 

Columbia  2013 7 (3) X 

Dominican Republic   2 X 

Ecuador  2008 2 (1) X 

Ethiopia  2013  X 

European Commission     

Finland  2014   

Georgia   3 X 

Germany  2013   

Ghana    X 

India   1 (1) X 

Indonesia  2012 3 (2) X 

Italy X 2005   

Japan X 2013   

Jordan    X 

Kazakhstan   1 (1) X 

Mexico  2014 28 (6) X 

Mongolia     

Nicaragua    X 

Nigeria    X 

Norway     

Pakistan  2013   

Peru  2012 3 (1) X 

Philippines  2013 3 (2) X 

Poland  2013 10 X 

Russia   1 (1) X 

Saudi Arabia     

Serbia   1 (1) X 

South Korea  2006 5 (3) X 

Sri Lanka  2012  X 

Thailand   4 (3)  

Turkey   11 (6) X 

Ukraine  2006 8 (7) X 

United Kingdom X 2006   

United States X 2014   

Vietnam   3 (1) X 

  2487 
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The IEA [163] attributes the growth of LFG projects in the US to the continuing 2488 

expansion of the "Landfill Rule." However, the energy opportunity afforded by LFG also has 2489 

been an important factor. 2490 

Individual state policies can be important, such as including LFG use in Renewable 2491 

Portfolio Standards or renewable Portfolio Goals, and providing loans, incentives, and tax credits 2492 

[163]. A number of states have established restrictions on inputs to landfills. Yard wastes are 2493 

mostly commonly banned, but other states are restricting food waste landfilling. Many of these 2494 

programs are not explicitly designed to reduce CH4 releases, but rather seek to promote 2495 

composting and generally increase diversion-recycling rates [302].  2496 

7.2 China Policies 2497 

China now accounts for 28% of the annual global CO2 emissions and deserves special 2498 

attention. The development of heavy industry created environmental problems in China in the 2499 

1950s, and social and political instabilities during the Cultural Revolution (1966-1976) 2500 

exacerbated these issues. Economic reforms that began in the mid-1970s resulted in very fast 2501 

development and urbanization, creating new kinds of environmental impacts. Laws and 2502 

regulations to protect the environment were adopted beginning in 1973, and in 1983 2503 

environmental protection was identified as a state "fundamental policy." Most regulations in the 2504 

1980s were traditional "end-of-pipe" restrictions on pollutant releases. In the 1990s, programs 2505 

adopted a more flexible approach, based on sustainability principles. In 2005, the major law 2506 

relating to solid waste management was adopted, as was a major piece of legislation targeting 2507 

renewable energy [124].  2508 

China is a member of the Global Methane Initiative, and as such has been involved in its 2509 

policy exploration and technical guidance that seek to reduce fugitive CH4 and increase 2510 

beneficial use of available CH4 [123]. 2511 

China has continued to target CH4 emissions in the 12th five year plan (2011-2015), 2512 

primarily through increased research on and utilization of coal bed and coal mine CH4. Under the 2513 

policy, China aims to capture an additional 1 trillion m3 of coal-based CH4 between 2012-2015, 2514 

potentially reducing overall GHG emissions by 990 MT CO2e during the planning period by 2515 

reducing coal use and capturing and utilizing coal bed CH4. The plan does recognize that LFGTE 2516 

projects in western areas should be promoted [251]. 2517 
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A success story to emulate is coal mine emissions. No coal CH4 was captured prior to the 2518 

1990s; currently, China has nearly half of the world’s coal mine CH4 recovery projects, with 2519 

more than 25% of captured gas being used for electricity production. These projects were 2520 

strongly supported with assistance from USEPA and the UN, and fostered China participation in 2521 

the Global Methane Initiative [80] [123]. 2522 

In 2005, the People's Congress passed the "Renewable Energy Law of the People's 2523 

Republic of China" (effective in 2006). It stressed the development of wind and solar projects. It 2524 

was amended in 2009. The law mandates purchase of waste-to-energy electricity by utilities, and 2525 

funds projects both through the national budget but also through fees destined to be allocated to 2526 

utilities to cover costs associated with grid connection and other costs of renewable power 2527 

sources. In 2013, the State grid issued a formal statement recognizing the necessity of 2528 

incorporating waste-to-energy electricity into the grid [251]. 2529 

In 2011, the State Council passed the "Opinions on Further Strengthening the Work of 2530 

MSW Disposal." This requires urban centers to use "safe" facilities (see just below) to manage 2531 

80% of wastes by 2015 (with the goal being to approach 100%). "Resource utilization" 2532 

(recycling and energy recovery) should be 30% by 2015, with a goal of 50%. The 2011 5-year 2533 

Plan for Environmental Protection also identifies benefits from LFGTE [251]. 2534 

Federal laws establish principles of management and pollution control. States set 2535 

standards for pollutant control. Waste management implementation is a function of local 2536 

government. Disposal sites, collection programs, scope of recycling -- all are determined by and 2537 

funded by local governments [124]. 2538 

Because of rapid urbanization and growing affluence, China is experiencing an explosion 2539 

in the amount of managed MSW. One account is it grew from 31 MT in 1980 to 180 MT in 2540 

2011, and could more than double to 480 MT by 2030. The World Bank determined China was 2541 

the world's largest generator of MSW in 2003 [106]. Additionally, China is facing an energy 2542 

problem; sufficient coal exists to meet energy needs, but coal has high GHG impacts. Alternative 2543 

energy sources are therefore attractive, and MSW offers several ways to generate energy. These 2544 

are primarily waste-to-energy incineration, and LFGTE [251]. 2545 

Landfills are the primary means of waste disposal in China. Less than 2% of MSW may 2546 

have been landfilled before 1990, with the remainder going to dumps; urban management rates 2547 
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approached 65% by 1999 with 700 disposal facilities, 200 of them "harmless" treatment plants. 2548 

The number of "safe" facilities (sanitary landfills, compost sites, and approved incinerators) 2549 

reached 677 by 2011, accounting for 80% of urban MSW. However, composting is falling out of 2550 

favor, perceived of as being expensive, difficult to conduct well, and producing a low value 2551 

product in that soil amendments have much less utility than fertilizers, and the MSW compost is 2552 

often physically contaminated by glass, metal, and plastic. Incineration has grown by an order of 2553 

magnitude from 2003 to 2011, with the number of plants doubling to 109, with an astonishing 45 2554 

plants coming on line in 2012, but only accounted for 16% of 2011 MSW [251]. There were 498 2555 

landfills in China in 2010; many of the new landfills use HDPE liners, compact wastes, and some 2556 

sites near the larger cities collect and use LFG [124]. 2557 

The Ministry of Housing and Urban-Rural Construction scores sanitary landfills. A score 2558 

of 85 or better is Class I, and between 70 and 85 is Class II. Below 70 is Class III, according to 2559 

the 2005 Standard of Assessment on Non-hazardous Disposal of Municipal Solid Waste 2560 

(CJJ/T107-2005). The first assessment was completed in 2005, and another in 2008. In 2008, the 2561 

standard was amended (GB16889-2008) to require CH4 control at landfills with a capacity 2562 

>2.5MT, and a depth of waste > 20 m. Collection and flaring of gas will meet the standard [126]. 2563 

To promote renewable energy, in 2006 the State Commission set subsidies (0.25 Yuan kW-1 2564 

more than coal electricity) for biomass-based renewable energy such as from LFG. Under the 2565 

Renewable Energy Law of 2006, electric companies must purchase renewable energy and 2566 

provide interconnections to the grid. Although LFGTE was pioneered before these laws (the first 2567 

LFGTE plant was operational in 1998 [164], as of 2008, 28 landfills were collecting gas, with 20 2568 

generating electricity or conducting some other kind of beneficial use. There were an additional 2569 

29 approved LFG proposals [126] (plants require an environmental assessment, a power use 2570 

feasibility plan, and local government approvals [162]). By 2012, there were 50 operating plants, 2571 

more than doubling the number of plants and the electrical capacity since 2007 [251]. 2572 

 China has created a classification of "environmental protection model cities" ("eco-2573 

cities"). One standard is that disposal rates for MSW at proper facilities must exceed 85%. This 2574 

competition has created models for sustainable development, making urban environments 2575 

"cleaner and tidier" [251]. 2576 
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Cai et al. [125] suggest that because China’s MSW has a higher organic fraction than 2577 

MSW from developed countries, it is important to develop efficient and effective gas controls as 2578 

new sanitary landfills are constructed. The gas control will not only limit CH4 emissions, but also 2579 

reduce complaints about “malodorous” conditions associated with China landfills. Brink et al. 2580 

[123] also identified addressing growing waste generation and landfilling rates as key to 2581 

mitigating future CH4 emissions. Xu [126] however suggested the need for expanding basic 2582 

waste management services will result in a large number of small landfills (<200 T d-1). The 2583 

small size of these sites is further affected by the high proportion of food waste. A lot of food 2584 

waste is believed to limit the duration of gas generation, as the wastes all degrade rapidly. Thus, 2585 

the feasibility of gas capture and use appears limited. Aerobic bioreactors were identified as a 2586 

means of limiting CH4 releases. Other alternatives to LFGTE include using aged MSW as cover 2587 

material to promote CH4 oxidation, and also to treat vent pipes with a "wind-heat-bacteria" 2588 

system that also can promote oxidation. Another proposal is to poison landfills with chlorinated 2589 

hydrocarbons with the intention of inhibiting methanogenesis [124]. In addition, Zheng et al. 2590 

[251] believe that, for large east coast cities, there is no land available for landfilling; sites will 2591 

need to be constructed far from the urban centers, making transportation costs and associated 2592 

pollution worse, and also requiring transmission of produced electricity. This is recognized in a 2593 

series of plans issued by the State Council, and the National Energy Council from 2011-2013, 2594 

which all gave preference to waste-to-energy incineration in eastern cities, and determined 2595 

LFGTE should be emphasized in the west where large landfills will continue to be used. In 2596 

addition, while incineration plants benefit from feed-in tariffs and base price supports, LFGTE 2597 

projects have no such benefits; they do receive an immediate refund of VAT, however [251]. 2598 

Brink et al. [123] suggest a waste management focus on urban areas. Their analysis 2599 

suggests that greater reductions in fugitive CH4 will result there because as more waste is 2600 

landfilled, waste management generally will become more cost effective (less expense for 2601 

transportation, more scalable opportunities for infrastructure costs). However, if rural areas gain 2602 

organized waste management, less sophisticated technology opportunities will probably lead to 2603 

less CH4 control. They would also like to see household biogas initiatives re-invigorated for rural 2604 

areas, which can serve as an alternative to waste disposal. Bond and Templeton [212] have 2605 

reviewed the promise and poor performance of these systems in India and China. 2606 
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China joined the CDM process in 2005, and as of 2013 accounted for over 50% of the 2607 

CDM projects, and over 60% of the CERs. Although most China CDM projects are in wind and 2608 

hydropower, waste to energy is a focus. The number of LFGTE projects certified by the China 2609 

NRDC has ranged from 3 to 14 (8 were registered in 2012), with UNFCC registrations ranging 2610 

from 1 to 11 (11 were registered in 2012). About twice as many incineration plants are registered 2611 

with both agencies [251]. However, mandating gas control may mean future LFG projects are 2612 

not eligible for CDM credits, as CERs are only issued if the project was not required -- there 2613 

must be an element of voluntary adoption of the behavior being rewarded [163].  2614 

CDM affects perspectives on potential projects. One analysis compared using LFG as 2615 

pipeline gas or to produce electricity (at three different collection efficiencies). Greater relative 2616 

gas utilization (measured as thermal energy) was realized by creating electricity, but the GHG 2617 

credits were greater to use the gas in the pipeline, making this a better choice. However, 2618 

electricity and gas grid pricing mean that capture of at least 65% of the landfill's gas is necessary 2619 

to make the project cost-effective. CDM credits could make either kind of project feasible at 2620 

lower capture rates [309]. However, in order for CDM credits to be earned by a project, a precise 2621 

and particular project development process must be followed, and one year of post project 2622 

monitoring is required to validate the emission reductions [137]. 2623 

7.3 Policies in the EU 2624 

The European Union (EU) and individual member states have a number of policies which 2625 

target MSW and CH4 emissions. In Germany, for instance, the Renewable Energy Sources Act 2626 

of 2004 provided feed in tariffs and a 20 year guaranteed price for renewable sourced electricity.  2627 

This included CH4 sources such as biomass digestion, coal mines and LFG. The U.K. was one of 2628 

the first nations to sign on to the Kyoto Protocol, signaling early and strong support for climate 2629 

change policy, and the U.K. has strong requirements for renewable energy use. Between 1990 2630 

and 2002, CH4 levels in the U.K. dropped by 43%. One tax policy was to exclude renewable 2631 

energy sources from a “Climate Change Levy” to provide them with a competitive advantage in 2632 

the energy markets. The U.K. also provides feed-in tariffs for biomethane. The 2008 Climate 2633 

Policy Act aims to reduce GHG emissions by 80% from 1990 levels, by 2050. Agricultural 2634 

practices are addressed, as agricultural CH4 emissions are the dominant domestic source, but are 2635 
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difficult to reduce. Sweden also provides tax benefits for biomethane use, and has quotas for 2636 

consumer use [95]. 2637 

In 2002, an EU regulation was adopted to regularize reporting of MSW. The EU-wide 2638 

data were first produced in 2007 [94]. The most significant policy affecting solid waste CH4 2639 

emissions is the EU Landfill Directive, adopted in 1999. The directive uses 1995 as a base year. 2640 

Member nations are required to reduce landfilling of biodegradable wastes. The reductions are 2641 

25% by 2004 (to 75% of 1995 levels), 50% by 2007, and 65% by 2016 (to 35% of 1995 levels) 2642 

[94]. The 65% reduction target date has been reset to 2018, and a "priority project" of zero 2643 

landfilling of degradable wastes was identified in 2011 (Global Methane Initiative 2013b). 2644 

Landfilled waste is now required to be treated, except where such treatment is “not technically 2645 

feasible.” As of 2008, Austria, Belgium, Denmark, Germany, Luxembourg, and The Netherlands 2646 

were characterized as having exceeded the standard, Finland, France, Italy, Sweden, and the 2647 

U.K. were in compliance, and Greece, Ireland, Portugal, and Spain were said to be in the process 2648 

of implementation [94]. In 2011, it was made mandatory for all member states to have gas 2649 

collection requirements for all landfills receiving biodegradable wastes [310]. 2650 

The IEA [163] believes its analysis shows individual country's feed-in tariffs were most 2651 

effective in spurring growth of LFG projects, especially from 2000-2005. Idiosyncratic policies, 2652 

such as Italy's quota system, were also helpful. The 2009 Renewable Energy Directive and the 2653 

2008 Waste Recycling and Recovery directive also support biogas use [95]. 2654 

The EU requires GHG emission reductions from its member states, with levels of 2655 

reductions based on each member's relative wealth. The standards are set for the major 2656 

constituent GHGs, including CH4, and are further targeted by generating sector. The waste CH4 2657 

targets are driven by the Landfill Directive program, with no specific amounts of CH4 reductions 2658 

being specified [310]. 2659 

  2660 
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8. Conclusions 2661 

Methane is the second most potent greenhouse gas; its atmospheric concentrations are 2662 

rising at a rate of 0.5% yr-1. Although fossil methane is emitted from natural processes and 2663 

exploitation of petroleum, coal, and natural gas resources, most methane is generated by 2664 

microbial degradation of organic matter in a variety of anaerobic settings. Landfills already 2665 

constitute a major source of anthropogenic methane and it is further projected to increase into the 2666 

foreseeable future. The amount of LFG generated and (more importantly) released to the 2667 

atmosphere is measured by models and monitoring. The scale of these measurements is from 2668 

individual measuring points at particular landfills to the entire world, though almost all of these 2669 

assessments are no more than crude approximations. The materials sent to landfills, even when 2670 

consistent at one site, are heterogeneous in nature, and the conditions within a landfill are 2671 

affected by a number of difficult to describe conditions. These include moisture availability, the 2672 

presence or absence of casings on the degradable matter, the degree of compaction, the presence 2673 

or absence of internal fires, weather, and climate. This means generalized models or point source 2674 

measurements may not appropriately detail the actual processes that are occurring. Some more 2675 

extensive monitoring processes are hampered by reproducibility and quality control issues. 2676 

Although the processes and conditions that lead to degradation are well tested in laboratory 2677 

mimics of fills, these experimental data do not appear to translate well to the actual sites where 2678 

wastes are buried. Broad estimates of LFG releases are hampered by the general inability to 2679 

count solid wastes well, and by poor descriptions of waste management systems by many 2680 

countries. Still, although it is not measured well, landfills produce a gas that is approximately 2681 

equal amounts of methane and carbon dioxide, along with some minor constituents. This product, 2682 

if released to the atmosphere, can affect human health (due to the carcinogenic and toxic nature 2683 

of some of the minor constituents), and also has climate change potential. Therefore, most 2684 

countries are seeking to limit its release. Methanotropes that develop naturally on the surface of 2685 

landfills will consume a portion of the methane and some of the other constituents of concern, 2686 

and conditions can be created that favor their growth and enhance their degradative powers. 2687 

More effective than microbial controls on the landfill surface is to enclose the landfill with some 2688 

impervious surface, and then to collect the landfill gas within the wastes through a vacuum-2689 
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driven system. The collected gases will, for many sites, support combustion and the conversion 2690 

to oxidized forms of much less environmental and human health concern. 2691 

Better than flaring the gas is to use it for constructive purposes. Methane is an energy 2692 

molecule so its stored energy potential can be exploited. For many sites, this means simply 2693 

burning the gas in an engine and using that energy to produce electricity. However, more 2694 

complicated and potentially lucrative options are available: the gas can be used in combined heat 2695 

and power systems, cleaned to meet standards for pipeline use or as a compressed natural gas 2696 

fuel, or processed in various ways to serve as substrates for specialty chemicals or alternative 2697 

vehicle fuels (such as drop-in hydrocarbon replacement, methanol, DME, higher alcohols, or 2698 

hydrogen to run a fuel cell). Many of these options, even the base case of electricity production 2699 

through an engine, require that the gas be cleaned of impurities and upgraded to increase its 2700 

energy density. Nonetheless, wastes are produced daily (worldwide waste generation estimates 2701 

range from 0.5 to 2 kg d-1, or even more for the US), the effort to create a product from this 2702 

available, renewable energy source may make economic sense. Lately, the biggest challenge is to 2703 

match the relatively small feedstock and address the “economy of scale”; this has spawned a 2704 

min-GTL industry for flared gas but is equally applicable to LFG. The vision is to install 2705 

community-level fuel production units on the landfill sites that have the potential to truly reduce 2706 

carbon footprint while turning waste into fuels.     2707 

Many governments see the sense in using this waste gas for good purposes. Some 2708 

promote landfill gas use through incentives of various kinds, and policies that foster creative and 2709 

more widespread exploitation of the gas resource. The US, both at home and through a global 2710 

organization it sponsors, is the prime player in these kinds of activities. Other governments, 2711 

however, seek to minimize fugitive methane but cutting it off at the source by limiting the 2712 

landfilling of organic matter, either by banning particular materials or treating wastes before 2713 

burial, or by seeking entirely different means of managing wastes other than landfills. The EU 2714 

countries, especially Germany, have been at the forefront of this strategic approach. China, as the 2715 

largest waste producer and the largest CO2 emissions (28% of the global total) in the world, and a 2716 

nation still establishing an infrastructure for environmentally sound, cost-effective waste 2717 

management, is a notable example of developing countries, to guide them as they become more 2718 

prosperous and technologically advanced. 2719 
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The general understanding is that modern landfills will produce landfill gas for at least 2720 

twenty years and perhaps fifty years after wastes are first buried. Methane also has a relative 2721 

short atmospheric half-life, especially compared to carbon dioxide. We, therefore, believe that 2722 

programs that seek to capture and then beneficially use LFG are needed, and they would be best 2723 

if they fostered site-specific evaluations and prescriptions, rather than seeking to establish 2724 

generic approaches based on sometimes poorly-founded conventional wisdom, especially for 2725 

sites in less developed countries. We think such tailored, nuanced policies and programs could 2726 

help create sustainable energy projects, often in areas where the need for unconventional, green 2727 

power is great. Of course, approaches that can process both CH4 and CO2 to produce fuels must 2728 

be at the core of advance technology development. This review attempted to cover these topics to 2729 

lay the foundation for further study that optimize conditions and allows energy harvest from 2730 

methane while concomitant reduction of its release into the atmosphere. The recently concluded 2731 

COP21 agreement in Paris, if fully enacted, could accelerate development of science, 2732 

technologies and policies that can help contain the set-forth goal of 2oC rise in earth’s 2733 

temperature by the end of the twenty-first century.    2734 
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