Part QM:
Quantum Mechanics

Last corrections: 2020/08/22

A revised version of this material is now published by the IOP under the title

“Quantum Mechanics: Lecture notes”
with the model solutions of the exercise problems published under the title

“Quantum Mechanics: Problems with solutions”
Table of Contents

Chapter 1. Introduction (26 pp.)
1.1. Experimental motivations
1.2. Wave mechanics postulates
1.3. Postulates’ discussion
1.4. Continuity equation
1.5. Eigenstates and eigenvalues
1.6. Dimensionality reduction
1.7. Exercise problems (12)

Chapter 2. 1D Wave Mechanics (76 pp.)
2.1. Probability current and uncertainty relation
2.2. Free particle: Wave packets
2.3. Particle motion in simple potential profiles
2.4. The WKB approximation
2.5. Transfer matrix, resonant tunneling, and metastable states
2.6. Coupled quantum wells
2.7. 1D band theory
2.8. Effective mass and the Bloch oscillations
2.9. Landau-Zener tunneling
2.10. Harmonic oscillator: Brute force approach
2.11. Exercise problems (43)

Chapter 3. Higher Dimensionality Effects (56 pp.)
3.1. Quantum interference, the AB effect, and magnetic flux quantization
3.2. Landau levels and quantum Hall effect
3.3. Scattering and diffraction
3.4. Energy bands in higher dimensions
3.5. Axially-symmetric systems
3.6. Spherically-symmetric systems: The brute force approach
3.7. Atoms
3.8. Exercise problems (36)

Chapter 4. Bra-ket Formalism (42 pp.)
4.1. Motivation
4.2. States, state vectors, and linear operators
4.3. State basis and matrix representation
4.4. Change of basis, unitary operators, and matrix diagonalization
4.5. Observables: Expectation values, uncertainties, and uncertainty relations
4.6. Quantum dynamics: Three pictures
4.7. Exercise problems (30)
Chapter 5. Some Exactly Solvable Problems (50 pp.)
 5.1. Two-level systems, a.k.a. spin-½ systems, a.k.a. qubits
 5.2. Revisiting wave mechanics
 5.3. Feynman’s path integral
 5.4. Revisiting harmonic oscillator
 5.5. The Glauber and squeezed states
 5.6. Revisiting spherically-symmetric problems
 5.7. Spin and its addition to orbital angular momentum
 5.8. Exercise problems (42)

Chapter 6. Perturbation Theories (40 pp.)
 6.1. Eigenvalue/eigenstate problems
 6.2. The Stark effects
 6.3. Fine structure
 6.4. The Zeeman effect
 6.5. Time-dependent perturbations
 6.6. Quantum-mechanical Golden Rule
 6.7. Golden Rule for step-like perturbations
 6.8. Exercise problems (30)

Chapter 7. Open Quantum Systems (58 pp.)
 7.1. Open systems, and the density matrix
 7.2. Coordinate representation and the Wigner function
 7.3. Open system dynamics: Dephasing
 7.4. Fluctuation-dissipation theorem
 7.5. The Heisenberg-Langevin approach
 7.6. Density matrix approach
 7.7. Quantum measurements
 7.8. Exercise problems (9)

Chapter 8. Multiparticle Systems (46 pp.)
 8.1. Distinguishable and indistinguishable particles
 8.2. Singlets, triplets, and the exchange interaction
 8.3. Second quantization
 8.4. Perturbative approaches
 8.5. Quantum computation and cryptography
 8.6. Exercise problems (26)

Chapter 9. Introduction to Relativistic Quantum Mechanics (36 pp.)
 9.1. Electromagnetic field quantization
 9.2. Photon statistics
 9.3. Spontaneous and stimulated emission
 9.4. Cavity QED
 9.5. The Klien-Gordon and relativistic Schrödinger equations
 9.6. Dirac’s theory
 9.7. Low energy limit
9.8. Exercise problems (19)

Chapter 10. Making Sense of Quantum Mechanics (6 pp.)
10.1. Hidden variables, Bell’s theorem, and local reality
10.2. Interpretations of quantum mechanics

**

Additional files (available upon request):
Exercise and Test Problems with Model Solutions (247 + 85 = 332 problems; 480 pp.)