


4.3.Sample Preparation Methods

Two techniques were typically used to mix soils with biopolymers: dry and wet
mixing [38, 39]. The dry mixing relies on initially mixing the dry biopolymer powder,
the dry clay filler (if used), and the dry soil; then, the desired amount of water is
added. While the wet mixing starts with forming a biopolymer solution (with or
without a clay filler) by mixing the biopolymer, and the clay filler (if used), with water.
After that, the biopolymer solution is mixed with the soil. In this study, the wet mixing
procedure was adopted because (1) it appears to be the most practical procedure to
mixing, or injecting, in-situ soils. In fact, the injection of polymerized solutions in soils
is currently adopted, for example, in microbially-induced calcite precipitation (MICP)
[40]. (2) It ensures effective polymerization of the raw biopolymer powder and
enhances biopolymer-filler interactions. On this front, it should be noticed that
preliminary experiments performed using the dry mixing method showed no
significant impact of the fillers on the soil response. And (3) it allows full control of
the water content during mixing ensuring uniform moisture distribution in the
samples or in-situ soil layers.

4.3.1. Polymerization process

For pure xanthan gum mixtures, the desired quantity of xanthan gum powder was
mixed with de-ionized water using a commercial food mixer (Black and Decker
PowerCrush, 900W). Mixtures of xanthan gum-clay composites started with mixing
the selected amount of the clay filler with de-ionized water using the same food mixer,
then the xanthan gum was slowly added. It should be noticed that advanced
polymerization processes using magnetic stirrers, with or without temperature
control, was not adopted in this study because, despite their better polymerization
results, they are not practical for field applications. The addition of xanthan gum
powder, to the de-ionized water in the former mix and to the clay-water colloid in the
latter mix, was done at a slow steady rate (~0.2 x 10 kg/min.) to avoid aggregation
and ensure an even dispersion of the gum in the clay mixture. Mixing was performed
initially at the mixer’s minimum speed, which was increased as the xanthan gum
percentage increases to overcome the increase in the mixtures’ viscosity. Additionally,
the temperature of the mixtures was carefully monitored to ensure that mixing was
always performed at room temperature except when a higher mixing temperature was
desired.

4.3.2. Biopolymer-soil mixtures

The quantities of the different components were based on the total mass of the soil
needed to fill a standard Proctor compaction mold (~ 2 kg), where the initial bulk
samples were prepared as discussed later. Two xanthan gum percentages, with
respect to the dry mass of the soil, were used in this study: 0.5% and 1% corresponding
to about 10 gm and 20 gm xanthan gum per compaction mold, respectively. These
percentages were selected based on previous studies in the literature that suggested
an optimum biopolymer percentage ranging between 0.5 and 2% [41, 42].
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a. Mixtures with EPK clay. The used kaolin specimens were compacted inside a 33
mm diameter and a 71 mm height compaction mold. The inner surface of the
compaction mold was greased to easy the sample extraction process. The dry mass of

the EPK clay powder was back-calculated from the volume of the compaction mold
targeting a dry unit weight of 12.65 + 0.3 kN/m?® corresponding to the maximum dry
unit weight for the pure and treated clay (see Section 4.5.2.b). The water contents used
during the compaction process correspond to the optimum moisture content of each
mixture, with or without biopolymer, to mimic the expected field construction
procedures. As discussed in Section 4.5.2.b, the pure EPK clay has an optimum
moisture content of 27%, while the optimum moisture content for the same clay
treated with xanthan gum is 35%. Thus, the water contents used for compacting the
pure EPK clay samples and the treated clay samples were 27% and 35%, respectively.

The desired clay powder was mixed with distilled water or with the
biopolymer-water solution prepared following the polymerization process in Section
4.3.1. The resulting wet clay was then placed gradually in the compaction mold in 10
layers. Each layer was compacted with a steel hammer until no kaolin-water clumps
were seen, and until a smooth clay surface was obtained. The surface of each layer
was scratched before placing the following layer to eliminate any wake planes within
the samples. At the end of the compaction process, the samples were extracted out of
the mold and trimmed to ensure 2:1 length-to-diameter ratio for unconfined testing.
Initial moisture contents of the compacted clay samples were measured from the
trimmings, which were used to quality control the dry unit weight. The final moisture
contents of the samples were measured after finishing the unconfined tests, which
were found to agree well with the initial measurements.

b. Mixtures with Carver sand.

A total of 280 gm of water was used during the polymerization of xanthan gum for all
sand mixtures. This water quantity ensures that sand samples have an initial moisture
content of 14%, which is the average optimum moisture content for the used sand
when treated with various xanthan gum polymer mixtures in a standard Proctor test
as discussed later. In addition to testing sand with pure xanthan gum, xanthan gum
mixtures with the two considered clay fillers (i.e., montmorillonite and halloysite) at
three masses (2, 5, and 10 gm) were used in this study. These masses correspond to
filler percentages of 10%, 25%, and 50%, respectively, with respect to the used xanthan
gum dry mass (20 gm). It should be mentioned that the impact of the clay filler type
and percentage on the optimum moisture content and maximum dry unit weight of
the treated carver sand was found to be insignificant as discussed later. Table 3
presents a summary of the xanthan gum treatments used for the sand in this chapter.

Xanthan gum and clay fillers, if used, were first polymerized following the
polymerization process mentioned earlier. Then, the carver sand was thoroughly
mixed with the various xanthan gum biopolymer mixtures using a stand mixer
(Waring commercial, 7qt) operating at its slowest speed to prevent entrapping
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excessive air voids. After mixing, bulk samples of the sand treated with the different
biopolymer composites were compacted following the standard Proctor test Method
A of ASTM D 698 [43]. The bulk samples were compacted to the optimum moisture
content (~ 14% * 1.5%) of the carver sand treated with xanthan gum targeting a
maximum dry unit weight of about 16.75 + 0.25 kN/m? as discussed later.

Table 3. Xanthan gum treatments used in this studz to stabilize carver sand.

Treatment reference ! Filler type Filler percentage 2
Clean Sand -3 -

XG - -

XG + 10% Montmorillonite Montmorillonite 10%

XG +25% Montmorillonite Montmorillonite 25%

XG + 50% Montmorillonite Montmorillonite 50%

XG +10% Halloysite Halloysite 10%

XG +25% Halloysite Halloysite 25%

XG +50% Halloysite Halloysite 50%

1 All XG treatments were based on 1% XG with respect to the dry mass of the carver sand.
2 All filler percentages refer to the dry mass of the XG used in the experiments.
3 No clay filler.

4.4.Testing Methods
4.4.1. Biopolymer characterization

De-ionized water-based dilute solutions with a total concentration of 0.005 gm solid
particles per 1 gm of water were produced. The solids in these solutions were either
the pure xanthan gum for mixtures without clay fillers, or xanthan gum and clay filler
particles at the desired weight-based ratios shown in Table 3. For a uniform and
homogeneous mix, the solutions were placed in a VWR incubating waver at 50 °C
with a wave rate of 15 rpm. After two hours of incubation, gel-like solutions were
formed which were used for the rheological measurements. All viscosity
measurements were performed using a cone-plate geometry in a Bohlin Gemini HR
Nano rheometer from Malverm instruments. The viscosity was measured as a
function of the shearing rate. For shear rate dependence, the viscosities of the solutions
were measured using a frequency sweep from 107 to 0.5 Hz at room temperature.

4.4.2. Soil characterization
a. Atterberg limits for EPK clay. A simple and quick assessment of the behavior

of cohesive soils is typically performed using Atterberg limits, with especial focus on
the plastic and liquid limits. These limits highly depend on the chemistry of pore fluid
[44], which is altered when biopolymers are used. Thus, Atterberg limits were first
determined, according to ASTM D4318 [45], for the pure clay with no biopolymers
which was used as a base reference. Then, Atterberg limits were determined for each
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clay-biopolymer mixture. In addition to xanthan gum biopolymer, which is the focus
of this study, Atterberg limits for the EPK clay treated with other biopolymers were
measured as shown in Table 4. These additional measurements aim to better
understand the interaction between different biopolymers and the clay and justify the
focus of xanthan gum as a representative biopolymer as discussed later.

Table 4. Different biopolymer mixtures used for Atterberg limits measurements.

Mixture # Primary biopolymer Secondary filler Mixing conditions
Type (%)! Type (%)!

1 -3 _— — - -

2 XG* 0.5 - - 20 °C
3 XG 1 -- - 20°C
4 XG 1 - - 80 °C
5 LBG* 1 -- - 20 °C
6 XG 1 Montmorillonite 10 20°C
7 XG 1 Montmorillonite 25 20 °C
8 XG 1 Montmorillonite 50 20°C
9 XG 1 Halloysite 10 20 °C
10 XG 1 Halloysite 25 20°C
11 XG 1 Halloysite 50 20 °C
12 XG 1 LBG 50 45 °C
13 XG 1 Starch 50 20°C
14 XG 1 GG* 40 20 °C

! Primary biopolymer percentages refer to the dry mass of the clay used in the experiments.
2 Secondary filler percentages refer to the dry mass of the primary biopolymer.

> None.

4 XG: Xanthan gum; LBG: Locust bean gum, GG: Gellan gum

b. Compaction tests. Adopting the proposed biopolymer-stabilized
soils for the construction of earth dams and levees requires identifying the impact of

biopolymers on the compaction characteristics of various soils. Thus, a series of
standard Proctor compaction tests, following Method A of ASTM D 698 [43], were
performed on the two considered soils treated with pure xanthan gum at different
percentages as well as the sand stabilized with xanthan gum-clay composites in Table
3.

4.4.3. Shear strength

The main focus of this project is on the use of biopolymer-stabilized soils to increase
the resiliency and sustainability of the materials for earth dams and levees. Thus,
assessing the shear strength of these soils is an essential part of the project. Therefore,
a series of triaxial tests were performed on the two considered soils. These triaxial

14



experiments included all sand mixtures in Table 3, the pure EPK clay, and the clay
treated with 0.5% and 1% xanthan gum. Sand samples were tested after isotropic
consolidation under undrained shearing with pore pressure measurements allowing
the determination of effective and total strength parameters. While unconfined triaxial
tests were used to assess biopolymer effects on the used clay.

The sand samples used for the triaxial tests were compacted to the desired dry
unit weight in the standard Proctor compaction mold following the same mixing
procedure discussed in Section 4.3.2.b. After compaction, the bulk soil blocks were
extracted from the compaction mold. Then, two triaxial samples were trimmed from
the center of each bulk block; each sample was 35-mm in diameter and 70-mm in
height. Trimming the two samples for each mixture out of the same bulk block was
adopted to eliminate potential differences between various bulk sand-biopolymer
batches. Each of the samples for a given biopolymer treatment was tested under a
different confining stress.

Each of the triaxial sand samples was mounted in a triaxial cell (Trautwein,
GeoTac); for this, the samples were enclosed in 0.3-mm Latex membranes and
sandwiched between filter papers and porous stones. The ASTM D 4767-11 [46]
procedure for consolidated undrained triaxial tests was adopted in this study. In this
procedure, a 35 kPa seating pressure was initially applied to the samples followed by
an automatic backpressure saturation stage in which water was pushed into the
sample from the top and the bottom boundaries under constant effective stress of 35
kPa. The backpressure saturation stage was completed when Skempton’s pore water
pressure B-value reached at least 0.97. After that, one sample of each mixture was
consolidated under 250 kPa while the other was consolidated under 500 kPa total
confining stress. These stresses were selected as they correspond to soil elements at
depths of about 15 m (50 ft) and 30 m (100 ft), which represent typical earth dams’
heights. Upon reaching to the end of primary consolidation, undrained shearing at a
constant rate of 1.46%/hr. was performed. This shearing rate was determined from the
consolidation curve as per the ASTM D 4767-11. Additionally, this selected shearing
rate ensures that the viscosity of the various xanthan gum mixtures remain
approximately constant. During shearing, the deviatoric stress, axial deformation, and
induced pore pressures at the bottom of the same were recorded.

The clay samples used in the unconfined triaxial tests were prepared following
the approach in Section 4.3.2.a. After compaction, the samples were tested under
unconfined conditions following ASTM [47]. All samples were sheared at a 1%/min.
rate. The axial deformation and corresponding axial load were recorded and used to
develop the stress-strain curve for each sample. The peak axial stress was used as a
failure criterion to estimate the unconfined strength of the soil.

4.5 Results and Discussions

4.5.1. Biopolymer rheological characteristics

The change in the viscosity of the pure xanthan gum solution, corresponding to 1%
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xanthan gum in the soil, is presented in Figure 6. As shown in this figure, the viscosity
of the xanthan gum solution depends on the shear rate significantly; it reduces
exponentially as the shear rate increases. Other than dynamic effects, the expected
shearing rate at the particulate level in typical geotechnical applications is very small
(<~ 0.1 Hz). Thus, the comparisons between the viscosities of the pure xanthan gum
and the gum-filler composites were performed using a semi-logarithmic scale for a
reduce shear rate range up to 1 Hz as shown in Figures 7 and 8 for the montmorillonite
and halloysite fillers, respectively.

It can be seen in Figures 7 and 8 that the two clay fillers used in this study
altered the viscosity of the xanthan gum solution for shear rates less than 0.1 Hz. Since
this is the range for typical geotechnical applications, the use of different fillers and
filler percentage is expected to impact the soil behavior significantly, as shown in the
following sections. At the biopolymer solution level, it is observed in Figure 7 that
10% montmorillonite clay filler caused a slight reduction in the viscosity of the
solution at shearing rates less than 0.015 Hz. Beyond this rate, the viscosity of the
montmorillonite treated gum was slightly higher than that of the pure gum. On the
other hand, xanthan gum solution with 25% montmorillonite filler appears to have
about the same viscosity at the pure gum solution at 0.01 Hz, but slightly higher
viscosity at higher shear rates. Finally, 50% montmorillonite filler increased the
viscosity of xanthan gum solution significantly (Figure 7).

7
——1% pure Xanthan Gum (XG)

Viscosity (kPa-sec)

F

0 1 2 3 4 5 6 7 8 9 10 11
Shear rate (Hz)

Figure 6. Viscosity evolution versus shear rate for pure xanthan gum solution.

All xanthan gum solutions treated with halloysite clay filler at all percentages
have viscosities much higher than that of the pure xanthan gum for shear rates less
than 0.1 Hz as shown in Figure 8. At higher shear rates, all solutions merge to the
viscosity of the pure xanthan gum curve. Unlike the response with montmorillonite
filler, the viscosity of xanthan gum with the halloysite filler increased as the filler

16



percentage decreased. This filler type-dependent response suggests that the selection
of the filler type is a critical aspect to stabilize soils with biopolymers as discussed
later.

—o-1% pure Xanthan Gum (XG)

“4-1% XG + 10% Montmorillonite
1% XG + 25% Montmorillonite

1% XG + 50% Montmorillonite
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Shear rate (Hz)

Figure 7. Comparison between the viscosity-shear rate relations for pure xanthan
gum and xanthan gum-montmorillonite solutions.
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Figure 8. Comparison between the viscosity-shear rate relations for pure xanthan
gum and xanthan gum-halloysite solutions.

A common approach in polymer sciences used to infer the impact of fillers on
the viscosity of polymers is to report the viscosity at zero shear by extrapolating the
viscosity-shear rate curve to zero shear. For simplicity and since the viscosity of the
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used biopolymers at very small shearing rates is believed to control the soil behavior,
we adopted this technique. Table 5 presents the viscosity at zero shear rate for all
considered xanthan gum solutions, with and without fillers. These viscosities will be
used to justify the observed soil behavior in the following sections.

Table 5. Viscosity at zero shear rate for different

Mixture # Filler Viscosity
Type (%) (kPa-sec)
1 -- -- 8.35
2 Montmorillonite 10 7.14
3 Montmorillonite 25 7.83
4 Montmorillonite 50 8.94
5 Halloysite 10 14.10
6 Halloysite 25 10.96
7 Halloysite 50 9.90

4.5.2. Biopolymer effects on soil characteristics
a. Atterberg limits for EPK clay.

The plastic and liquid limits for the considered clay-biopolymer mixtures (Table 4) are
presented in Table 6. It can be observed in this table that, regardless of the biopolymer
type and percentage, the plastic and liquid limits for the clay treated with biopolymers
are higher than the limits for the pure EPK clay. These higher limits indicate that, for
a comparable shear strength, the biopolymer-stabilized clays will contain more water
compared to the pure clay. For example, the higher plastic limits for the former clays
indicate that the water quantity needed to have the biopolymer-treated clays behave
plasticly, with an approximate undrained shear strength (S.) of 170 kN/m? [48], is
more than that needed to trigger the plastic response in the pure clay. Similarly, the
water quantity needed to reduce the strength of biopolymer-stabilized clays to behave
as a liquid (i.e., Su = 1.7 kN/m? [48]) is much higher than that needed to have the same
strength in the pure clay. These high-water contents required to change the
consistency of the biopolymer-treated clays are attributed to the hydrophilicity of the
xanthan gum biopolymer, i.e., the ability of the biopolymer to adsorb water.

Moreover, it appears from Table 6 that the percentage of the biopolymer
impacts Atterberg limits of the treated clay. The clay treated with 0.5% mass-based
xanthan gum, for example, had a higher plastic limit yet a lower liquid limit compared
to the clay treated with 1% xanthan gum (Table 6). The higher plastic limit for the
former clay-gum mixture is a result of having a small quantity of the gum in the clay
and the competing attractions of the gum to the water and to the clay [35]. The anionic
xanthan gum polymer chains get attached to the positive charges on the EPK clay
surface. Since these positive charges are localized on the clay surface, the polymer
chains form train-loop-tail configurations (Figure 9). For the 0.5% xanthan gum
treatment, more loops cross-link between different clay particles exposing a
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significant length of xanthan gum chains to the pore water. This exposure allows the
gum to adsorb large amount of water before a clear impact occurs on the clay
consistency. On the other hand, the large number of polymer chains in the 1% xanthan
gum mixture is enough to saturate clay particles with individual xanthan gum chains.
This, in turn, results in a smaller number of exposed chain loops and more clay-
attached trains compared to the 0.5% xanthan gum mixture. The limited exposed
chain loops reduce the amount of water that the xanthan gum can adsorb resulting in
a lower plastic limit for the 1% treated clay compared to the 0.5% treated clay.
However, the impact of the limited quantity of the polymer chains in the 0.5% xanthan
gum mixture also constrains the maximum amount of water it can adsorb. This
constrained water adsorption capacity explains the lower liquid limit for the 0.5%
xanthan gum mixture compared to the 1% mixture, which has more water adsorption
capacity.

Table 6. Atterberg limits for different EPK clay-biopolymer mixtures.

Mixture Plastic =~ Liquid Plasticity

# Mixture! %3 Limit Limit  Index (%)
(%) (%)
1 Pure EPK clay 32.0 67.0 35.0
2 0.5% XG 51.3 106.5 55.2
3 1% XG 44.0 126.5 82.5
4 1% XG @ 80 °C 419 114.9 73.0
5 1% LBG 443 104.5 60.2
6 1% XG + 10% Montmorillonite 47.5 105.0 57.5
7 1% XG + 25% Montmorillonite 55.6 108.0 52.4
8 1% XG + 50% Montmorillonite 44.0 122.3 78.3
9 1% XG + 10% Halloysite 53.7 105.2 51.5
10 1% XG + 25% Halloysite 49.1 104.0 54.9
11 1% XG + 50% Halloysite 49.6 105.4 55.8
12 1% XG +50% LBG 40.3 123.7 83.4
13 1% XG + 50% Starch 40.0 114.6 74.6
14 1% XG +40% GG 46.5 119.7 73.2

! Primary biopolymer percentages refer to the dry mass of the clay used in the
experiments.

2 Secondary filler percentages refer to the dry mass of the primary biopolymer.
3 XG: Xanthan gum; LBG: Locust bean gum, GG: Gellan gum

Moreover, the impact of the degree of polymerization of the biopolymer on the
clay’s liquid limit appears to be significant. The degree of polymerization of any
polymer indicates the length of the polymer chains upon mixing as well as the
capacity of the polymer to adsorb water after the initial polymerization. Higher
degrees of polymerization correspond to longer polymer chains and less post-
polymerization water adsorption capacity compared to lower degrees of
polymerization. Variations in the degree of polymerization may be triggered by
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having different mixing conditions or using fillers to stabilize the biopolymer. The
effect of the mixing conditions is presented in Table 6 by mixtures 3 and 4, both of
which consisted of 1% xanthan gum; however, mixture 3 was mixed at room
temperature (i.e.,, 20 °C) while mixture 4 was mixed at 80 °C. Mixing at elevated
temperatures increases the degree of polymerization significantly [35], thus the latter
mixture has a much higher degree of polymerization than the former. The higher
degree of polymerization for mixture 4 reduced the post-polymerization water
adsorption capacity compared to that for mixture 3. This limited water adsorption
capacity for mixture 4 explains the lower plastic and liquid limits for this mixture
compared to those for mixture 3. Despite the inconsistencies in the plastic limits, a
similar effect of the different fillers was also observed in the liquid limit of the
biopolymer-stabilized clays. As shown in Table 6, all mixtures consisting of xanthan
gum and a filler, either clay (mixtures 6 through 11) or other biopolymers (mixtures
12, 13 and 14), had less liquid limit compared to the pure xanthan gum in mixture 3.
This is because fillers promote the initial polymerization process which reduces the
post-polymerization water adsorption capacity.

|
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surface @ Negative surface charge

v

Figure 9. Sketch of the train-loop-tail configurations of biopolymer and clay
particles [3].

Despite the previously discussed effects of filler-induced changes on the clay
Atterberg limits, it appears in Table 6 that these changes are not significant for the
considered clay type and for a given xanthan gum percentage. For all 1% xanthan gum
treatments, the average and standard deviation of the plastic limit were 46.5% and
5.1%, respectively; while the average and standard deviation of the liquid limit were
113.6% and 8.5%. Accordingly, all 1% xanthan gum treatments have plastic and liquid
limits that are within one standard deviation of the respective average values proving
that the observed variation due to filler type is not significant.

Finally, the practical implications of the high Atterberg limits of the
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biopolymer-stabilized clays are twofold. The first is an expected higher shear strength
compared to the pure clay at the same water content. For instance, the pure clay will
behave plasticly at a water content of 34%, while biopolymer-treated clays will
continue to have a semi-solid consistency as this water content is less than the plastic
limits for these treated clays. Similarly, the pure clay will become liquid at water
contents of 67% or more, while all other biopolymer-treated clays will still have plastic
consistency due to their high liquid limits. The second practical implication of the high
Atterberg limits of biopolymer-stabilized clays is an expected lower permeability of
the biopolymer-stabilized clay at all degrees of saturations. This expected lower
permeability will enhance the hydraulic performance of the clay cores in earth dams
and levees.

b. Compaction tests.

The results of the standard Proctor compaction tests for the carver sand and the EPK
clay treated with various xanthan gum mixtures are shown in Figures 10 and 11,
respectively. For the treated carver sand (Figure 10), it appears that the various
xanthan gum treatments do not have significant impacts on the optimum moisture
content and the maximum dry density. All data follow the same overall trend showing
a slight increase in the dry unit weight up to a moisture content of 14 + 1.5%
corresponding to a maximum dry unit weight of 16.75 + 0.25 kN/m?3. After this
moisture content, the dry unit weight experiences a dramatic reduction as the
moisture content increases. Therefore, all samples used to assess the impact of
biopolymer on the shear strength of the used sand were compacted at a moisture
content of ~ 14% targeting a dry unit weight of 16.75 kN/m?.

Moreover, the maximum dry unit weight of the biopolymer-treated clay
matches this of the pure EPK clay as shown in Figure 11. However, treating the clay
with xanthan gum increased the optimum moisture content (35%) significantly
compared to this of the pure clay (27%). This difference in the optimum moisture
content is attributed to the unique clay-biopolymer-water interactions discussed in the
previous section. However, the effect of the xanthan gum percentage on the optimum
moisture content and the maximum dry unit weight of the EPK clay was insignificant
as shown in Figure 11 for the 0.5% and 1% xanthan gum treatments. For these two
mixtures, the optimum moisture content and maximum dry unit weight are 35% and
12.65 kN/m?3, respectively. These results agree with the minor impact of the various
biopolymer treatments on Atterberg limits of the EPK clay as discussed in the
previous section. Therefore, compacted clay samples used to assess the impact of the
biopolymer treatment of the shear strength of the clay were compacted using the
respective optimum moisture content for each mix, 27% for the pure EPK clay and
35% for the clay with xanthan gum, targeting a dry unit weight of ~ 12.65 + 0.3 kN/m?®.
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Figure 10. Standard Proctor compaction curve for carver sand treated with

xanthan gum/clay composites.
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4.5.3. Biopolymer effects on shear strength
a. EPK clay.
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The stress-strain curves from the unconfined tests of the pure EPK clay and the clay
treated with 0.5% and 1% weight-based xanthan gum are shown in Figure 12. These
unconfined tests were performed on samples compacted at the optimum moisture
content for each mixture (27% for pure clay and 35% for clay with xanthan gum as



shown in Figure 11) to a dry unit weight of 12.65 + 0.3 kN/m® These compaction
conditions were selected to mimic those expected to be followed on actual
construction sites, i.e. each soil layer is compacted to its maximum dry unit weight.

As shown in Figure 12, the pure clay had a maximum deviatoric axial stress
(i.e., unconfined strength) of 136 kPa, while the clay samples treated with 0.5% and
1% xanthan gum had peak deviatoric stresses of 220 kPa and 200 kPa, respectively.
These unconfined strengths for the clay treated with 0.5% and 1% xanthan gum
correspond to 62% and 47% strength increase over the pure clay, respectively.
Additionally, it was noted that the stiffness of the clay treated with xanthan gum is
slightly less than that of the pure clay. While these reduced stiffness for the
biopolymer treated clays imply that these treated clays will experience higher strains
at a given axial stress level, it is worth noting that all clay samples experienced the
same strain level at the peak deviatoric stress of the pure clay (i.e., 136 kPa). However,
the samples treated with xanthan gum did not fail like the pure clay sample.
Accordingly, the reduced stiffness of the treated clay is not believed to be a critical
factor in the design of earth dams and levees using biopolymer treated clays.
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Figure 12. Deviatoric axial stress versus axial strain for the pure clay and the clay
treated with different xanthan gum percentages from the unconfined shearing tests.

b. Carver sand.

Figure 13 presents the impact of 1% pure xanthan gum on the stress-strain curve and
the shearing-induced pore water pressures of the carver sand at 250 and 500 kPa. As
shown in this figure, xanthan gum reduced the stiffness of the sand and its strength
significantly at the two considered stresses (Figures 13.a and 13.b). The maximum
deviatoric stress of the sand treated with pure xanthan gum was about 68.5% of that
of the clean sand for the two considered confining stresses. Moreover, the magnitude
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of the pore water pressure developed during shearing of the sand treated with pure
xanthan gum was less than that developed when the clean sand was sheared. This
decrease in the shearing-induced pore water pressure is about 61% and 66% for the
samples tested at 250 and 500 kPa, respectively. These results agree with other studies
in the literature [49].
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Figure 13. Results of isotropic consolidated undrained triaxial shear tests on the

clean carver sand and sand treated with 1% pure xanthan gum at 250 kPa (a and

¢) and 500 kPa (b and d) confining stresses. (a and b) deviatoric stress-strain

curves and (c and d) pore water pressures.

In order to overcome the reduced strength and stiffness associated with the use
of pure xanthan gum biopolymer, this study focusd on stabilizing xanthan gum
biopolymer with clay fillers. Figures 14, 15, and 16 present the stress-strain curves and
pore pressures induced during undrained shearing of sands treated with 10%, 25%,
and 50% fillers, respectively. It can be observed in these figures that all percentages of
the montmorillonite clay filler resulted in a maximum deviatoric stress more than that
for the sand treated with pure xanthan gum and the clean sand. At 250 kPa confining
stress, the maximum deviatoric stress for the samples treated with 10%, 25%, and 50%
montmorillonite filler were about 108%, 128%, and 123% of those of the clean sand,
respectively. These percentages increase to 120% and 143% for the 10% and 25%
montmorillonite fillers, respectively, at 500 kPa confinement. Contrarily, the increase
in the maximum deviatoric stress for the sand with 50% montmorillonite-stabilized
xanthan gum over the clean sand at 500 kPa was 111%, i.e. less than that at 250 kPa
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stress (123%). While these shear strength enhancements appear to be relatively small
in percentages, the increased shear strength is attributed mainly to an increase in the
cohesion which has signification practical implications for the earth dams as discussed
later.
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Figure 14. Results of isotropic consolidated undrained triaxial shear tests on
clean carver sand, sand treated with 1% pure xanthan gum, and sand treated with
1% xanthan gum pre-stabilized with 10% clay fillers at 250 kPa (a and c) and 500
kPa (b and d) confining stresses. (a and b) deviatoric stress-strain curves and (c
and d) pore water pressures.

Moreover, these strength improvements prove that the use of montmorillonite
fillers to stabilize xanthan gum biopolymer prior to treating sand allows overcoming
the negative impact of the pure xanthan gum on the strength of the sand. This success
is demonstrated by the increase of the maximum deviatoric stress of the sand with
xanthan gum-montmorillonite filler compared to that of the sand treated with pure
xanthan gum. At 250 kPa confining stress, 10%, 25%, and 50% montmorillonite fillers
increased the maximum deviatoric stress by 158%, 190%, and 188%, respectively, over
the sand with pure xanthan gum. Similarly, enhancements of about 174%, 207%, and
161% were observed when using xanthan gum with montmorillonite fillers over the
samples with only pure xanthan gum at 500 kPa. Thus, the use of montmorillonite
filler to stabilize biopolymers offers a practical technique to eliminate the negative
impacts of biopolymers on the strength of biopolymer-stabilized soils and other bio-
mediated soil treatments that rely on biopolymers to trigger desired bioactivities such
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as MICP [40].

4

—o-Clean Sand

%-XG only
[ ~*XG +25% Montmorillonite
XG +25% Halloysite

L AALALAADAASN
-3

w

Sy
%
s

Deviatoric stress (MPa)
8]

0.0 4%
02 4
-04 4

-0.6 1

Pore water pressure (MPa)

08§

Axial strain (%) Axial strain (%)
Figure 15. Results of isotropic consolidated undrained triaxial shear tests on
clean carver sand, sand treated with 1% pure xanthan gum, and sand treated with
1% xanthan gum pre-stabilized with 25% clay fillers at 250 kPa (a and c) and 500
kPa (b and d) confining stresses. (a and b) deviatoric stress-strain curves and (c
and d) pore water pressures.

Moreover, the absolute value of the shearing-induced pore water pressures for
the sand treated with montmorillonite-stabilized xanthan gum were higher than the
pore pressures developed upon shearing clean sand and sand treated with pure
xanthan gum for all montmorillonite percentages and confining stresses. These results
indicate that sand samples treated with montmorillonite-stabilized xanthan gum
experienced more suction (i.e., negative pore water pressures) upon shearing
compared to the latter samples. Such large suctions contribute to the enhanced
deviatoric stress for the former samples over the latter ones. Higher negative pore
water pressures increased the effective stress applied between the soil grains, which
increased the shearing resistance and therefore the shear strength of the soil.

Unlike the montmorillonite-filler, the impact of stabilizing xanthan gum with
halloysite clay fillers on the maximum deviatoric stress depends on the base reference
for the comparison. Compared to the sand treated with pure xanthan gum, halloysite
clay filler resulted in slight improvements in the maximum deviatoric stress ranging
between 109% and 147% at 250 kPa confining stress and between 116% and 154% at
500 kPa. However, comparing the maximum deviatoric stress of the sand with
halloysite-stabilized xanthan gum to that of the clean sand reveals that a large quantity
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of the halloysite filler is needed to ensure comparable strengths. For example, using
xanthan gum stabilized with only 10% halloysite decreased the maximum deviatoric
stress to 75% and 80% of the strength of the clean sand at 250 and 500 kPa
confinements, respectively. While, 50% halloysite filler achieved 100% and 104% of
the maximum deviatoric stress of the clean sand at 250 and 500 kPa confinements,
respectively. These differences between the ability of montmorillonite filler to stabilize
xanthan gum versus this of the halloysite filler is attributed to differences in the
particle shapes, surface area, accessible surface charges as will be discussed in Section
4.6.
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Figure 16. Results of isotropic consolidated undrained triaxial shear tests on

clean carver sand, sand treated with 1% pure xanthan gum, and sand treated with

1% xanthan gum pre-stabilized with 50% clay fillers at 250 kPa (a and c) and 500

kPa (b and d) confining stresses. (a and b) deviatoric stress-strain curves and (c

and d) pore water pressures.

4.6.Discussions

This section discusses the mechanisms underlying the strength changes of soils treated
with xanthan gum biopolymer stabilized with the different fillers. These mechanisms
are presented considering the rheological responses (i.e., viscosity) of various xanthan
gum stabilizations to shearing.

a. Mechanisms for biopolymer strengthening of sands.

The carver sand used in this study is a silica-based sand that has minimal surface
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interactions with its surrounding pore fluid. Therefore, the observed changes in the
sand behavior when treated with xanthan gum, either pure or with clay fillers, are
attributed mainly to the biopolymer behavior. The biopolymer first coats sand
particles then, as the biopolymer percentage increases, it replaces pore water [42].
Accordingly, the presence of xanthan gum biopolymer in the sand altered its shear
strength parameters (i.e., friction angle and cohesion). To demonstrate this impact, the
results of the triaxail tests reported in Figures 14, 15, and 16 were used to determine
the effect of xanthan gum on Mohr-Coulomb strength parameters of carver sand: the
effective internal friction angle (¢") and cohesion (¢’). Table 7 presents the strength
parameters defining Mohr-Coulomb failure envelop for each of the considered
treatments.

Table 7. Effective friction angle and cohesion of clean carver sand and sand
treated with xanthan gum composites.

Effective internal ~ Effective Viscosity of XG
friction angle (¢'), cohesion treatment at shear rate
Treatment reference degrees (¢'), kPa =0 Hz, kPa-sec
Clean Sand 33 0 --
XG only (1%) 23 201 8.35
XG +10% Montmorillonite 33 0 7.14
XG + 25% Montmorillonite 30 131 7.83
XG +50% Montmorillonite 17 657 8.94
XG +10% Halloysite 25 201 14.10
XG +25% Halloysite 31 74 10.96
XG + 50% Halloysite 33 0 9.90

As shown in Table 7, biopolymer treatments alter the internal friction angle and
the effective cohesion between sand particles. Sand treated with only 1% pure xanthan
gum experiences 10° reduction in the internal friction angle with a significant increase
in the cohesion. These changes are attributed to differences in the viscosity of the pure
xanthan gum compared to the pore water in the clean sand. The highly viscous pure
xanthan gum (1) cross-links sand particles together which increases the cohesion and
(2) lubricates the interface between sand particles reducing the internal friction angle.
These changes result in lower shear strengths for the sand treated with 1% pure
xanthan gum compared to the clean sand at the considered confining stress levels as
shown in Figure 13.

When clay fillers were used to stabilize xanthan gum, it is noted that the
viscosity of the biopolymer-clay composite plays a significant role on the strength
parameters of the sand. For a given filler type, the treated sand experienced higher
cohesion (Figure 17.a) but less internal friction angle (Figure 17.b) as the viscosity of
the used biopolymer-filler composite increased. As the viscosity of xanthan gum with
a specific filler type increased, the strength of the biopolymer cross-linking bridges
between sand particles increased raising the cohesion of the treated sand. Meanwhile,
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higher viscosities decreased the ability of the biopolymer-filler composite to flow
under shearing. In turn, this limited flow ability reduced direct interparticle sand
contacts by sandwiching a biopolymer lubricating layer in between particles, which

reduced the internal friction angle of the treated sand.
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Figure 17. Relation between viscosity at no shear of xanthan gum solution and (1)
the internal friction angle, and (b) the cohesion of the treated sand

Moreover, the other factors that appear to have a significant impact on the
behavior of the treated sand are filler type, percentage and biopolymer-filler
interactions. For all filler percentages, xanthan gum-halloysite composites have higher
viscosities than those with montmorillonite fillers (Figure 18). Despite of their higher
viscosity, the former composites resulted in lower cohesions between sand particles
than the latter ones (Figure 17.b). Moreover, the cohesion of the sand treated with the
highly viscous xanthan gum-halloysite composites was upper bounded by the
cohesion of the sand treated with the less viscous pure xanthan gum. Similarly, the
highly viscous xanthan gum-halloysite composites did not reduce the internal friction
angle between sand particles as much as the less viscous pure xanthan gum or xanthan
gum-montmorillonite composites (Figure 17.a). These responses suggest that the
biopolymer-filler viscosity is not the only parameter controlling the treated soil
behavior; it rather appears that the interactions between the used biopolymer and

filler have critical effects.

The significance of the filer type, percentage, and respective interactions with
xanthan gum biopolymer is demonstrated in Figure 18. As shown in this figure, the
viscosities of the halloysite-based composites decrease as the percentage of the
halloysite filler increases. Contrarily, an increase in the percentage of the
montmorillonite filler increases the viscosity of the resulting composite. These
different responses are attributed to the unique particle shape and surface chemistry
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of each of these two fillers. The montmorillonite clay particles are plate-like with very
high width-to-thickness aspect ratio, while the halloysite clay particles have a tube-
like shape (Figure 5). Additionally, the surface area of the montmorillonite clay
particles is much higher than that of the halloysite clay as discussed in Section 4.2.4.
The former clay is also characterized by its high net negative charge, localized positive
surface charges and cation exchange capacity, all of which significantly exceed those
of the halloysite clay. Moreover, xanthan gum polymer chains are able to intercalate
and partially exfoliate the montmorillonite particles [35], while these chains interact
with only the exposed surfaces of the halloysite particles [35]. These unique
montmorillonite clay characteristics (i.e., high surface area, localized positive charges,
and easy of intercalation) produce stronger xanthan gum-montmorillonite composites
compared to xanthan gum-halloysite composites [35, 50-53]. Thus, halloysite-based
xanthan gum composites are much easier to lose their strength and break up on
shearing than the montmorillonite-based composites. This weaker response explains
the lower cohesion of the halloysite-based composites compared to the higher
cohesion of the montmorillonite-based composites. Furthermore, a higher number of
direct contacts between sand particles occurs as the halloysite-based composites fail
at interparticle interfaces compared to the direct sand contacts for the stronger
montmorillonite-based composites. These direct sand contacts allow preserving the
internal friction angle for the halloysite-based composites.

--A--Montmorillonite filler
Halloysite filler

Viscosity of XG-clay treatment at no
shear (kPa-sec)

A
0 10 20 30 40 50 60
Filler weight-based percentage with respect to
weight of XG biopolymer (%)
Figure 18. Impact of the filler type and percentage on the viscosity at zero shear for
the resulting xanthan gum-filler composite.

b. Practical implications for biopolymer stabilized soils.

In this section, we briefly discuss the various practical implications of the findings of
this experimental program. The discussion presented here relies on current design and
construction practices for earth dams and levees; it is, therefore, considered to be a
qualitative discussion. The quantification of the expected factor of safety against slope
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stability is presented in Chapter 6.
The practical implications for clays treated with biopolymers include:

1) Higher Atterberg limits indicate that biopolymer treated clays can preserve
their consistency at higher water contents compared to the pure clays. The
practical implication of this point is that the cores of earth dam made of
compacted biopolymer treated clays will remain intact at water contents
exceeding the plastic limit of the pure untreated clay.

2) The higher unconfined strength of biopolymer treated clays allows the
construction of steeper and higher earth dams and levees using the same earth
materials. This advantage will reduce the need to export and use non-native
materials, such as cement and fly ash, to strengthen the national earthen
infrastructure to sustain todays’ pressing design needs.

3) The ability of the biopolymers in the clay to adsorb water and fill any pores will
allow the biopolymer treated clay cores to self-heal. While this self-healing
ability was not examined in this project and should be studied in detail in
future research, such ability will reduce the risks associated with internal
erosions of earth dams and levees.

The practical implications for sands treated with biopolymers include the
ability of biopolymer-treated sands to resist surface and internal erosions in earth
dams and levees. To demonstrate this ability, various Mohr-Coulomb failure envelops
from all considered mixtures are plotted and compared to one another in Figures 19.a
and 19.b for montmorillonite and halloysite fillers, respectively. As shown in Figure
19.b, the use of halloysite clay fillers does not increase the shear strength significantly,
if any, over the plotted stress range. As discussed earlier, the maximum strength of
the mixture with halloysite clay is achieved at 50% halloysite percentage and it is
comparable to the strength of the clean sand.

On the other hand, Figure 19.a shows that 50% montmorillonite filler offers a
significant increase in the shear strength, over the clean sand and sand treated with
xanthan gum with other percentages of montmorillonite filler, up to about 1.8 MPa
effective normal stress on the failure plane. This effective normal stress on the failure
plane corresponds to an effective vertical stress of about 3.4 MPa, which represents
about 200 m in the ground. Since most of the geotechnical engineering applications
consider depths much shallower than this 200 m, the use of 50% montmorillonite
fillers appears to be the most promising for xanthan gum stabilization for soil
improvement. At 1 MPa (~20 ksf) normal stress on the failure plane expected at about
50 m in the ground, for example, the increase in the shear strength of the sand when
treated with xanthan gum stabilized with 50% montmorillonite is about 60% (from
620 kPa to 970 kPa). Moreover, higher percent of shear strength enhancement is
expected at shallower depths as shown in Figure 19.a. This high strength at shallow
depths is attributed to the significant increase in cohesion between the sand particles.
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Since soil cohesion is a major factor resisting the soil erosion [54, 55], it is expected that
the observed increase in the cohesion of the biopolymer treated sand to increase the
sand resistance to erosion.
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Figure 19. Overlapped Mohr-Coulomb failure envelops for the different sand and
xanthan gum mixtures. (a) montmorillonite clay fillers, and (b) halloysite clay
fillers.

4.7.Conclusions
The results of the experimental program used in this study show that:
1) For clayey soils:
a. Atterberg limits of clayey soils increase when the clay is treated with

biopolymers. However, the impact of the biopolymer type and percentage
appears to be insignificant.

b. The maximum dry unit weight of the biopolymer-treated clay matches this of
the pure clay. However, the optimum moisture content needed to achieve this
dry unit weight is much higher for the biopolymer-treated clay compared to
the pure clay.

c. The unconfined strength of compacted biopolymer-treated clays increases
compared to this of pure clay at the same dry unit weight.

d. A slight decrease in the stiffness of the biopolymer-treated clay is observed
compared to the pure clay. However, this stiffness reduction is insignificant for
the construction of earth dams and levees since the two clays experience the
same deformation at stress levels corresponding to the undrained strength.

2) For sandy soils:

a. Mixing sandy soils with hydrated biopolymers decreases their shear strength

32



mainly due to significant reductions in the internal friction angle between the
soil particles, despite the increase in cohesion.

. Stabilizing biopolymers using clay fillers offer a practical technique to
overcome the strength reduction due to the lubrication effect of the pure
biopolymers.

The magnitude of the strength gain in sandy soils treated with biopolymer-
filler composites depends on the filler type, percentage and interaction with the
used biopolymer.

. For a given filler type, it is noticed that increasing the viscosity of the
biopolymer-filler composite reduces the internal friction angle but increases the
cohesion between the sand grains.
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5. BIODEGRADABILITY OF BIOPOLYMER SOIL TREATMENTS

One of the most concerning issues about the use of biopolymers to stabilize soils is the
biodegradability of the used biopolymers. Biopolymers may degrade due to many
factors that are classified into either mechanical or chemical factors [56, 57]. The
mechanical factors include forces applied to the chains of the biopolymer that may
break its backbones. For biopolymers used to treat soils, the applied forces are not
expected to be enough to break the covalent bonds forming the backbone of the
biopolymer. Thus, the latter chemical scission is believed to dominate any potential
degradability of the biopolymers soil treatments. This chemical scission may occur
due to radiative effects due to ultra-violet (UV), temperature changes, or due to
digestion as a result of microbes that are naturally present in the soil. For biopolymer
used to stabilize soils, the former factor (i.e., UV light) is not believed to be a critical
factor since these materials will be buried in the ground with limited exposure to any
UV lights. Moreover, the second factor is not considered as well because the selection
of the biopolymer for any given project will consider all environmental factors for that
explicit project including expected temperature variations. Thus, the sole factor that
may contribute to the degradability of biopolymers in soil treatments is the biological
degradation as the native micro-organisms consume the biopolymer as a food and
energy source.

Therefore, this chapter focuses first on the expected response of biopolymers
due to various degrees of biodegradability, regardless of the triggering mechanism.
This task is presented in Section 5.1 using advanced molecular dynamics simulations.
Then, the degradability of xanthan gum biopolymer used to stabilize a sandy soil is
assessed experimentally over a period of 9 months as presented in Section 5.2.

5.1.Advanced Numerical Models

Since the time scales for biopolymer degradation are unknown experimentally and
require field tests, we can simulate the effect that degradation will have on the
measured viscosity of the pore aquatic biopolymer solution. As discussed in the
previous report, this viscosity affects the shear strength of the soil significantly. Thus,
this report presents a specially designed Molecular Dynamics simulation to predict

the changes in the pore fluid viscosity.

Molecular dynamics (MD) simulation of the biopolymer-clay composites was
performed using the Large-Scale Atomic/Molecular Massively Parallel Simulator
(LAMMPS), which is an open-source molecular dynamics environment distributed by
the Sandia National Laboratory. In this study, we investigated the effects of volume
fraction of the clay filler, the interaction strength between the biopolymer and clay

filler, the presence of a water solvent and shearing speeds.
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5.1.1. Modelling details

This section presents the details of the modelling approach adopted in this study
including the approach used to model the biopolymer chains, clay fillers, and the
mechanism followed to model shearing between soil particles.

a. Modeling biopolymer chains.

The biopolymers were modeled using the Kremer-Grest (KG) model [58, 59]. The KG

model is one of the most popular CG representations of polymers in general. The

model is very simple, yet computationally efficient. Here, the biopolymer is modeled
as a sequence of beads connected by springs where the springs are defined by the

Finite Extensible Nonlinear Elastic (FENE) potential given by Eq. (1).

1—(Lj } r<r,
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where R, is the maximum extensible distance, r is the distance between beads and k is

the elastic constant.

In our model, we also used the Nose-Hoover thermostat for temperature
control [58]. Each polymer was modeled as a sequence of 64 beads. This is larger than
the entanglement length of the biopolymer and will enable us to recover the correct
dynamics of the considered biopolymer. The KG model, along with all other pairwise
interactions in the simulation, uses the simple Lennard-Jones (L]) potential (V) defied
in Eq. (2).

VU ()= 4{(% _(%H for r<r,

0 for r>r,

()

where r. is the cutoff distance beyond which the L] potentials were neglected, ois the

length scale of the simulation, and ¢is the energy interaction parameter.

b. Modeling clay filler.

The clay filler was created by combining 19 L] spheres in a hexagonal lattice to form a
plate-like particle. The L] potential from Eq. (2) was used for interactions between clay
particles and biopolymer chains. However, the interaction between clay particles was
set to be repulsive to prevent clumping. The physical attraction between biopolymer
and clay was simulated via short-range attractions according to the simple Lennard-

Jones potential. The structure and strength of such materials were studied using
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viscosity measurements and particle orientation from the simulation.

c. Shearing between soil particles.

In additional to equilibrium simulations, where there was no shear applied to the
system, the dynamics of the biopolymer-clay composite under an applied shear were
modeled to mimic the condition when a soil is subjected to shearing. In order to
account for shear, and to mimic the pore fluid being sheared between soil particles,
we modeled the soil surfaces as planar walls. Two walls were created perpendicular
to the z-axis of the simulated domain (Figure 20), which bounded the biopolymer and
clay filler. The wall was made up of similar L] spheres in a structured face-centered
cubic (FCC) lattice. Pairwise interactions between biopolymer and the wall, and clay
and wall were included using the L] potentials from Eq. (2). The walls were pivotal in
creating a constant pressure for the system and in the stress tests. Shearing was
applied by moving the walls with similar velocities but in opposite directions. By
changing the velocity of the walls, we effectively change the shearing rate (Figure 20).
The velocity profile was then used to calculate the viscosity of the composite as
discussed in the following section. For all the shearing calculations, we ensured that
there were no-slip boundary conditions at the wall, where fluid velocity at the

boundary is equal to the wall velocity.

top wall

——————— bottom wall

Figure 20. Schematic of velocity under constant shearing. Dotted lines represent the
top and bottom walls while the solid arrows show the change in velocity through
the layers.

All simulations were performed in reduced units, called L] units in LAMMPS
terminology. All the computations were normalized by setting the various terms in
the Lennard-Jones equation (Eq. (2)) to unity. Once the force and pressure calculations
were performed, the normalized quantities (f* and P*) were converted back to real

values using Eq. (3) and Eq. (4), respectively.
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where ois the length scale and ¢1is the energy scale of the simulation.

For all simulations, the velocity and trajectory of each particle were determined
using the Verlet-velocity algorithm with a time step At =0.005 - 7, where 7 is the unit
of time. The system was kept at a constant temperature of 1.1 - ¢ by Nose-Hoover
thermostat to ensure the biopolymer stays in the melt phase. A simulation domain in
the shape of a cubic box of length of 40 - ¢ was created with 800 biopolymer chains
introduced at random positions. The clay filler volume fraction and the energy
parameter between clay particles and biopolymer chains (&) were the main variables
studied in this setup. Figure 21 shows the initial morphology of the system. Note that
in this case, the solvent particles were not included in the simulation; rather, we
modeled the solvent as an implicit solvent to determine the equilibrium structure of
the biopolymer-clay system. For an implicit solvent, the solvent was modeled using
an effective averaged potential, rather than including them explicitly. The volume

fraction of the biopolymer used in these simulations is 12.2%.

Figure 21. The initial configuration of the biopolymer-clay composite. The system
was bounded by two walls, top and bottom (green color). The biopolymer chains
(blue color) and the clay nanoplatelets (red color) were randomly distributed.

All equilibration was done under constant load conditions, where the system
was allowed to reach an equilibrium state in a zero-stress state. While we equilibrated
the system under constant volume (NVT) constraints when shearing was considered.
For the constant volume equilibration, the z-dimension of the system was fixed. In all

cases, periodic boundary conditions were applied in the x- and y-directions.
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5.1.2. Results

In order to model the degradation of the biopolymer chains, we considered the
following cases: a) a pure biopolymer (no degradation) b) 20% degradation c) 30%
degradation and d) 50% degradation. Since the locations of the scission on the
biopolymer chains are randomly located, we assumed that on average a bond will be
broken in the center of the biopolymer backbone, which is a conservative assumption.
Thus, 20% of degradation assumes that on average 20% of the biopolymer chains will
have a bond broken at the center of their backbone, effectively reducing their chain
lengths to half of its original length. The process of the simulation was as follows: first,
we ran the simulation using the original chain lengths to ensure that equilibrium was
reached. Once we reached equilibrium, we performed the degradation step where the
bond in the center of the backbone of a number of the modeled biopolymer chains,
corresponding to the desired degradation percentage, were randomly selected and
removed. We then re-equilibrated the system and then performed our shear test by

using the procedure described earlier.

The results of our simulation are shown in Table 8. In this table, all units are in
terms of the viscosity of the pure polymer systems (set to 1). As can be seen from Table
8, the biopolymer reserved a significant part of its viscosity even at 50% degradation.
This is in large part due to the fact that the viscosity of biopolymers is dominated by
chain interlockings and entanglements, which remain present even after the chain
length reduce due to the degradation process. These results suggest that stabilizing
soils with biopolymers will not experience a significant reduction in the soil strength

due to biopolymer degradation.

Table 8. Scaled viscosities (viscosity of degraded biopolymer/viscosity of pure
biopolymer) as a function of the amount of degradation of the biopolymer.

Degradation (%) Ratio of scaled viscosity (77 / 1,)
20 0.93
30 0.83
50 0.77

5.2. Experimental Assessment of Biodegradability Effects

This section aims to experimentally validate the main finding of the advanced
molecular dynamics simulations about the biodegradability effects on biopolymer
treated soils. As discussed in the previous section, the viscosity of the biopolymers
treatments for soils is not expected to suffer significant reductions upon 50%
degradation. If this finding is valid, no significant strength losses are expected to occur
in biopolymer treated soils. Therefore, we use the change in the unconfined shear
strength of sand treated with different biopolymer-clay composites as an indirect
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measure inferring the degradability of the biopolymer in the sand over time.
5.2.1. Materials and sample preparation techniques

In the experiments for the biodegradability assessment, the carver sand
described in Chapter 4 was used. However, unlike for the strength experimental
program in Chapter 4, the sand used for the biodegradability experiments was not
washed to ensure that any native micro-organisms that naturally exist in the sand
deposit were present in the final specimens. Additionally, the biopolymer and clay
fillers used in the biodegradability experiments reported in this chapter were the same
as those described in Chapter 4. Moreover, all xanthan gum biopolymers (with and
without clay fillers) were prepared following the procedure described in Chapter 4.

The preparation of the samples differs from that mentioned in Chapter 4. For
the samples used in the biodegradability experiments, the quantities of the different
components were based on the total mass of the soil needed to fill a small compaction
mold of 33-mm in diameter and 70-mm in height (~ 115 + 3 gm), where the initial bulk
samples were prepared. The used mass ensures that the dry unit weights of all tested
specimens are within 2% of the optimum unit weight for the used sand with 1%
xanthan gum (i.e., 1675 kN/m?3). One xanthan gum percentage (1%), with respect to
the dry mass of the soil, was used in this study. This percentage was selected since it
was the most promising percentage for this biopolymer based on the results of the
shear strength experiments reported in Chapter 4.

A total of 15 gm of water was used during the polymerization of xanthan gum.
This water quantity ensures that the sand samples have an initial moisture content of
14%, which is the average optimum moisture content for the used sand when treated
with various xanthan gum polymer mixtures in a standard Proctor test as discussed
in Chapter 4. In addition to assessing the degradability of the sand with pure xanthan
gum, xanthan gum mixtures with two clay fillers (i.e., montmorillonite and halloysite)
at two masses percentages of 10% and 50% were considered. Table 10 presents a
summary of the xanthan gum treatments used for the sand in this degradability study.

The xanthan gum and clay fillers, if used, were first polymerized following the
polymerization process mentioned earlier. Then, the carver sand was thoroughly
mixed with the various xanthan gum biopolymer mixtures using a stand mixer
(Waring commercial, 7qt) operating at its slowest speed to prevent entrapping
excessive air voids. After mixing, bulk specimens of the sand treated with the different
biopolymer composites were compacted in the used mold. Then, the specimens were
extracted out of the mold and either tested fresh or stored for testing later. Specimens
that needed storage were first wrapped in two layers of plastic wrap to minimize
moisture losses, and avoid any strength gain due to dehydration. After that, the
specimens were enclosed inside a water path tank with temperature control; all
specimens were placed above the water level in the water path. The temperature of
the water path was set to 20 °C to avoid any degradation due to thermal effects.
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Table 9. Xanthan gum treatments used to stabilize carver sand for the
biodegradability study.

Treatment reference ! Filler type Filler percentage 2
Clean Sand -3 -

XG - -

XG +10% Montmorillonite Montmorillonite 10%

XG + 50% Montmorillonite Montmorillonite 50%

XG +10% Halloysite Halloysite 10%

XG + 50% Halloysite Halloysite 50%

1 All XG treatments were based on 1% XG with respect to the dry mass of the carver sand.
2 All filler percentages refer to the dry mass of the XG used in the experiments.
3 No clay filler.

5.2.2. Unconfined compressive tests

The indirect assessment of the degradability of the xanthan gum biopolymer in the
treated sand was performed using the unconfined compressive strength of
comparable specimens tested at different times. The considered testing times are 0
(i.e., fresh mixtures), 1, 7, 28, 60, 90, 180, and 270 days.

All unconfined tests were performed using an automated loading frame
provided by Trautwein GeoTAC group. The two surfaces of the specimens were first
levelled then placed under the loading piston of the loading frame. All specimens
were sheared at 1% strain per minute to failure. A load cell connected to the loading
piston was used to measure the applied vertical load during shearing. Meanwhile, an
LVDT connected to the top of the loading piston was used to measure the axial strain
the specimens experience under the applied loads. In the end, samples were collected
out of the failed specimens to measure the moisture content and confirm the dry unit
weight of each specimen.

After shearing, the dimensions of the failed specimens were measured to allow
correcting the cross-sectional area of each specimen for the respective failure mode
(i.e., barrelling or slip surface). The corrected cross-sectional area and applied axial
loads were then used to estimate the applied axial (i.e., vertical stress). The stress-
strain curve for each of the tested specimens were then plotted and the peak axial
stress (i.e., unconfined compressive strength) and the corresponding strain at failure
were determined.

5.2.3. Results and Discussions

Figures 23 and 24 presents the unconfined compressive strength versus time for the
specimens treated with xanthan gum with montmorillonite and halloysite fillers,
respectively. As shown in these figures, the unconfined compressive strength for each
of the considered specimens appears to fluctuate over time. However, no significant
reduction in the unconfined compressive strength of the treated sand is observed for
any of the mixtures even after 9 months (i.e., 270 days in Figures 23 and 24). Thus, it
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appears that xanthan gum biopolymer in the sand specimens was able to provide the
strength increase over time suggesting that minimal degradation occurred on these
specimens. These results agree well with the main conclusion of the advanced
molecular dynamics simulation discussed in the previous section. These results also
agree with the findings of Chang et al. [39], who concluded that the biopolymers used
to stabilize soils do not undergo major degradation based on the unconfined
compressive strength of 2 years aged specimens with different biopolymers.
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Figure 22. Unconfined compressive strength of Carver sand treated with pure
xanthan gum (XG) and XG-montmorillonite clay filler (at 10% and 50%) versus age
of the specimens in days.

It should be noticed here that the unconfined compressive strengths of the sand
treated with pure xanthan gum or xanthan gum-clay composites appear much lower
than the effective cohesion predicted from the triaxial tested in the previous section.
This discrepancy is justified since the unconfined compressive strength used in this
report is double the undrained shear strength (S.), while the previous section
considered the drained effective cohesion (c¢’). Thus, the two experiments consider
different strength parameters: one for undrained (this report) while the other
considers the drained parameters (Section 5). The lack of direct relations between the
two strength parameters limited our ability to relate the results of the two
experimental programs.
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Figure 23. Unconfined compressive strength of Carver sand treated with pure
xanthan gum (XG) and XG-halloysite clay filler (at 10% and 50%) versus age of the
specimens in days.

5.3. Conclusions

The main conclusion of the numerical models and experimental program performed
as part of this milestone is that the biodegradability of biopolymers used to stabilized
soils is not significant. The advanced molecular dynamics models showed that even
at 50% degradation in the biopolymers, the viscosity of the biopolymer was reduced
by 23%. This reduction is not considered significant since the initial viscosity is
significantly higher than that of the pore water in untreated specimens. The
experimental program, then, confirmed the finding of the numerical modeling as the
experiments showed no significant reduction in the unconfined compressive strength
of sand specimens treated with various xanthan gum-clay composites even after aging
for 9 months.
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6. FIELD TEST DESIGN

The main aim of this report is to design a full-scale field test in which the performance
of biopolymer stabilized soils will be assessed in a full-scale earth dam. The design of
the proposed earth dam will utilize the knowledge acquired from all previous
milestones and will target data collection from a field experiment over an extended
period of time. Potentially, the field experiment is to be constructed at one of the U.S.
Army Corps of Engineers facilities that allow accelerated weathering of earth
structures to facilitate assessing the biodegradability on site. The field experiment
described in this report is to be constructed in collaboration with other federal and
state agencies that have interest in the proposed technique. On going efforts of the
project team in this front target securing the required funding for this field
experiment. This report present the main design of the field experiment including the
overall geometry of the proposed earth dam (Section 6.1), the selection of the various
materials to be used (Section 6.2), the results of the preliminary slope stability
numerical models for the proposed earth dam (Section 6.3), techniques to be followed
to transition the proposed technology into field scale (Section 6.4), and the long-term
performance predictions that will be measured during the field experiment (Section
6.5).

6.1.0Overall geometry of the proposed earth dam.

Figure 25 presents the geometry of the proposed earth dams and a plan view of the
different segment of the dam. This earth dam mimics the geometry of the Prompton
dam in Lackawaxen River, PA. This earth dam was designed and constructed by the
U.S. Army Corps of Engineers and provided in the USACE engineering manual for
General Design and Construction Considerations for Earth and Rock-Fill Dams (EM
1110-2-2300) as an example of an unzoned embankment dam with interior inclined
and horizontal drainage layers to control through seepage. The proposed earth dam
is to be constructed in three segments:

(1) Segment 1 will be used as a basis for the comparison. It will extend for the first
50 ft of the dam length and will be constructed using pure EPK clay for the
compacted fill zone. The side slopes for this segment will be 1V : 2.75H,
matching the slopes used for the Prompton dam.

(2) Segment 2 will extend between 50 and 100 ft along the dam alignment. EPK
clay treated with xanthan gum biopolymer that was pre-stabilized with 50%
montmorillonite clay will be used for the construction of the compacted fill
zone for this segment. The side slope of this segment will be i.e. 1V : 2.75H,
similar to Segment 1.

(3) Segment 3 will extend from 150 ft to 200 ft along the dam alignment and will
use the same materials as this used for Segment 2. The only difference between
Segment 2 and 3 is the slope of the dam sides; the latter segment will have
steeper side slopes of 1V : 1.75H (~ 30° from horizontal).
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It is proposed to install a vertical wall in between each two segments to insulate the
failures. The sides of these vertical walls are to be painted with tar to minimize the
impact of wall-soil friction on any detected failure.
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Figure 24. Plan and elevation views of the proposed field experiment.

6.2.Product Selections

The materials selected for the proposed field experiment were described in the
previous section for each of the proposed segments. These materials are:

(1) The EPK clay as the main cohesive soil for the compacted fill. This clay was
selected for the proposed demo because it meets the requirements for the

compacted fill zone of earth dams and is radially available in the market in large
quantities.

(2) Xanthan gum biopolymer as the main biopolymer type to be used to stabilize the
EPK clay. This biopolymer was selected because it is one of the cheapest
biopolymers currently available in the market with sufficient quantities to be used
in earth dams. Moreover, the response of Xanthan gum biopolymer is very well
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characterized in the literature. Additionally, the performance of the EPK clay

stabilized with xanthan gum was analyzed in this project and is currently fully
understood.

(3) Montmorillonite clay as a filler to stabilize xanthan gum biopolymer before using
the stabilized biopolymer to treat the EPK clay. This filler type was selected based
on the experimental results performed in this project that showed a significantly
better performance of the xanthan gum stabilized with montmorillonite clay filler
compared to the other considered fillers.

6.3.Experimental and numerical modeling results

The factor of safety against slope stability for the proposed field demo was estimated
using SLIDE limit equilibrium package. The geometry of the proposed earth dam was
constructed in SLIDE for each of the segments as shown in Figure 26.
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Figure 25. SLIDE slope stability models. (a) right-to-left failure, and (b) left-to-
right failure surface.

As shown in Figure 26, the geometry and zones of the Prompton dam were adopted
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in the SLIDE models since these zones are recommended for the proposed field demo.
The results of the laboratory experiments on the considered materials were
incorporated in these slope stability models. Explicitly, the unconfined compressive
strength of the compacted EPK clay with and without xanthan gum treatment
determined in the experimental program was assigned to the compacted fill zone of
the dam for each respective analysis. The foundation soil was assigned an infinite
strength to eliminate any failure surface from penetrating into the foundation soil. For
the site condition, the earth dam will be constructed on a concrete slab to ensure that
the foundation soil does not influence any slope failure.

For each of the considered conditions, the factor of safety was determined
following Bishop simplified, Janbu simplified, Spencer, and Crops of Engineers #1
methods. The lowest factor of safety of all these method (mostly Janbu simplified) was
considered in the assessment of the performance performed here. While the proposed
experiment considers only two slopes, these slopes were selected based on the factor
of safeties obtained (Figure 27).

As shown in Figure 27, the factors of safety for the EPK clay stabilized with
xanthan gum (with 50% montmorillonite clay filler) are significantly higher than those
for the pure EPK clay for all side slopes. For the right-to-left failures (Figure 3.a),
xanthan gum stabilization results in an increase of about 50% in the safety factor.
While an increase of about 25% in the factor of safety is noticed for the biopolymer
stabilized EPK clay over the pure clay considering left-to-right failures. It should be
noticed also that the proposed slope for Segments 1 and 2 corresponds to 20° from the
horizontal, while the proposed slope for Segment 3 corresponds to 32° from the
horizontal.

It should be noticed here that the limit equilibrium method, the underlying
basic method for all techniques used to determine these factors of safety, does not
provide good estimates of the expected deformations. However, this analysis is
considered sufficient since the main goal of this field experiment is to demonstrate the
ability of biopolymer treated soils to support steeper slopes and resist
biodegradability over the years. Thus, the proposed biopolymer soil treatment is
considered successful is the field demo remains standing for the monitoring period
and beyond. Clear deformations for all segments will be periodically measured on site
using aerial and other techniques.

6.4.Techniques to transition to field scale

In the lab, the biopolymers were mixed with the EPK clay using a lab-scale mixer. To
be able to apply this in the field, concrete mixing trucks are proposed to be used to
ensure adequate mixing of the biopolymers with the clay powder. Additional,
techniques that may be considered in-situ depending on the funding availability
would be injection into an additional dam segment (not shown in Figure 25) consisting
of silty sand material.
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Figure 26. Minimum factor of safety for (a) right-to-left failure, and (b) left-to-
right failure.

6.5.Long-term performance measures

The long-term performance measures that will be recorded in the proposed field
demonstration will include:

(1) Surface contours of the dam, which will be measured using aerial images and
conventional surveying techniques.

(2) Pore water pressures within the earth dam, to be measured using pore pressure
gauges and tensiometers to determine any suction within the earth dam. These
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gauges and tensiometers are to be installed symmetrically around the top of
the dam every 25 ft (horizontally measured distance) of the side slopes. A pore
pressure gauge and a tensiometer are to be installed every 10 ft into the dam at
every one of the selected locations. Finally, three different sections of each
Segment (Figure 25) are to be instrumented: 10 ft, 25 ft, and 40 ft from the
beginning of the segment.

These contours will be used to determine the stability of the slopes of the earth dam.
Furthermore, these results will be used to validate advanced finite element numerical
models that will allow generalizing the results of this field experiments to other cases
in the future.
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7. TRANSITION TO USE PLAN

The end users will gain a free access to the project outcomes (e.g., reports and data)
via the Stony Brook University Repository Academic Commons. Academic Commons
is both a repository and a service to collect, organize, store, and share the scholarly
output of Stony Brook University. Academic Commons furthers the engagement
mission of the University by providing a platform from which the global community
can benefit from the scholarly output of Stony Brook University. For more information
about this system, please visit https://library.stonybrook.edu/scholarly-
communication/academic-commons/

In addition to depositing all the project outcomes in the Academic Commons
Repository, the contacts for the PI and all co-PIs will be provided in the final report of
the project. All interested agencies will be encouraged to contact the project team to
gain access to the information.

7.1. Partnerships

The project team has identified the following partners that will make use of the project
outcomes in the near future:

1) The U.S. Army Corps of Engineers

2) The U.S. Bureau of Reclamation

3) Federal Emergency Management Agency (FEMA)

4) Wayne County Water and Soil Authority (Local Agency in Upstate NY)

7.2. FUNDING

There is no funding needed for the maintenance or support of the project outcomes
for this project. However, any funding to address application-specific design will be
provided by the agency managing such application if needed.
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