Title

Non-linear Hydroxyl Radical Formation Rate in Dispersions Containing Mixtures of Pyrite and Chalcopyrite Particles

Document Type

Article

Publication Date

6-1-2017

Abstract

The formation of hydroxyl radicals was studied in mixed pyrite-chalcopyrite dispersions in water using the conversion rate of adenine as a proxy for hydroxyl radical formation rate. Experiments were conducted as a function of pH, presence of phosphate buffer, surface loading, and pyrite-to-chalcopyrite ratio.

The results indicate that hydroxyl radical formation rate in mixed systems is non-linear with respect to the rates in the pure endmember dispersions. The only exception is a set of experiments in which phosphate buffer is used. In the presence of phosphate buffer, the hydroxyl radical formation is suppressed in mixtures and the rate is close to that predicted based on the reaction kinetics of the pure endmembers.

The non-linear hydroxyl radical formation in dispersions containing mixtures of pyrite and chalcopyrite is likely the result of two complementary processes. One is the fact that pyrite and chalcopyrite form a galvanic couple. In this arrangement, chalcopyrite oxidation is accelerated, while pyrite passes electrons withdrawn from chalcopyrite to molecular oxygen, the oxidant. The incomplete reduction of molecular oxygen leads to the formation of hydrogen peroxide and hydroxyl radical. The galvanic coupling appears to be augmented by the fact that chalcopyrite generates a significant amount of hydrogen peroxide upon dispersal in water. This hydrogen peroxide is then available for conversion to hydroxyl radical, which appears to be facilitated by pyrite as chalcopyrite itself produces only minor amounts of hydroxyl radical. In essence, pyrite is a “co-factor” that facilitates the conversion of hydrogen peroxide to hydroxyl radical. This conversion reaction is a surface-mediated reaction.

Given that hydroxyl radical is one of the most reactive species in nature, the formation of hydroxyl radicals in aqueous systems containing chalcopyrite and pyrite has implications for the stability of organic molecules, biomolecules, the viability of microbes, and exposure to dust containing the two metal sulfides may present a health burden.